Supporting Information

High entropy biphasic oxide cathode materials for sodium-ion

batteries to mitigate performance degradation

Yusong Wang^{a,b}, Yingshuai Wang^a, Lei liu^a, Ziye Wang^a, Xiangyu Ding^a, Qinbo Zhou^a, Shaowen Huang^{a,b}, Hexiao Zhang^a, Hongcai Gao^{a,b,c*}

a.School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China

b.Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, China

c.Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120. P.R. China

Relevant formulas

The configuration entropy can be calculated from the following Eq. $(S1)^{1,2}$:

$$S_{config} = -R[(\sum_{i=1}^{N} x_i ln x_i)_{cation-site} + \sum_{j=1}^{M} x_j ln x_j)_{anion-site}]$$
(S1)

where R is the ideal gas constant (physics) and xi & xj are the mole fractions of the cationic and anionic site elements respectively. As the sample synthesised in the experiment contains only one anion, the influence of the anion has only a negligible effect on the Sconfig and the impact of the anion can not taken into consideration in the calculation. Moreover, the Gibbs free energy of the material can be calculated according to Eq. $(S2)^{1,2}$:

$$\Delta G = \Delta H - T \Delta S \tag{S2}$$

In the calculation of diffusion coefficients, if the relaxation time τ is very short, the relationship between $dE/d\sqrt{t}$ is linear, and the Na+ diffusion coefficient can be calculated by simplified Eq.(S3)³:

$$D_{Na+} = \frac{4}{\pi\tau} \left(\frac{m_B V_M}{M_B S}\right)^2 \left[\frac{\Delta E_s}{\Delta E_t}\right]^2$$
(83)

where D_{Na^+} (cm² s⁻¹) represents the Na+ diffusion coefficient, V_M (cm³ mol⁻¹), m_B, and M_B are the molar volume, weight, and molar weight of the active materials, respectively, S and τ (s) denote the surface area of the electrode and the testing time in each step, and ΔE_s and ΔE_t are the quasi-equilibrium potential and the change in cell voltage *E* during the current pulse, respectively.

Figure

Fig. S1 dQ/dV curves for NNMO, O3-HEO and P2/O3-HEO.

Fig. S2 CV curves of NNMO, O3-HEO and P2/O3-HEO at 0.3 mV $\ensuremath{\mathrm{s}}^{\ensuremath{\mathrm{-1}}}$

Fig. S3 The cycling performances at 5C for O3-HEO and P2/O3-HEO.

Fig. S4 GITT curves and corresponding D_{Na^+} values of NNMO and O3-HEO.

Fig. S5 The contour plot of In-situ XRD patterns selected 2θ regions.

Table

		71.8 wt%	O3 phase	R ³ m							
Atom	Wyckoff	X	у	Z	Occ.	U _{iso}					
Na	3a	0	0	0	0.802	0.0186					
TM	3b	0	0	0.5	1	0.0250					
0	6c	0	0	0.234	0.951	0.0017					
a=b=2.94009 Å, c=16.44799 Å, V=123.130 Å ³ , α=β=90°, γ=120°											
		28.2 wt%	P2 phase	P63/mmc							
Atom	Wyckoff	X	У	Z	Occ.	U _{iso}					
Na _e	2d	0.66667	0.33333	0.25	0.392	0.2732					
Na _f	2b	0	0	0.25	0.287	0.1010					
TM	2a	0	0	0	1	0.0250					
0	4f	0.66667	0.33333	0.08593	0.924	0.0250					
a=b=2.91147 Å, c=11.13127 Å, V=81.715 Å ³ , α=β=90°, γ=120°											
	a=b=2.91147	′Å, c=11.13	127 Å, V=81	.715 Å ³ , α=β=	=90°, γ=120)°					

Table S1 Rietveld refinement result of P2/O3-HEO.

			O3 phase	R ³ m		
Atom	Wyckoff	X	У	Z	Occ.	B _{iso}
Na	3a	0	0	0	0.919	0.0594
TM	3b	0	0	0.5	1	0.0250
0	6c	0	0	0.23250	0.947	0.0065

Table S2 Rietveld refinement result of O3-HEO.

a=b=2.95741 Å, c=16.18838 Å, V=122.619 Å³, α=β=90°, γ=120°

Rwp = 5.462%, GOF = 2.52, $\chi 2 = 6.34$

Table S3 Rietveld refinement result of NNMO.

			P2 phase	P63/mmc		
Atom	Wyckoff	X	У	Z	Occ.	B _{iso}
Na _e	2d	0.66667	0.33333	0.25	0.389	0.2124
Na _f	2b	0	0	0.25	0.268	0.1067
TM	2a	0	0	0	1	0.0250
0	4f	0.66667	0.33333	0.08363	0.964	0.0065
	a=b=2.88295	5 Å, c=11.16	505 Å, V=80.	332 Å ³ , α=β=	90°, γ=120	o

Rwp = 5.958%, GOF = 2.11, $\chi 2$ = 4.47

 Table S4 The XRF result of O3-HEO

	Na	Mn	Fe	Ti	Ni	Mg	Zn	Cu
mass fraction %	14.65	24.19	9.27	2.42	9.96	1.42	3.89	4.16
Composition of atomic	0.637	0.439	0.165	0.050	0.169	0.059	0.060	0.065

 Table S5 The XRF result of P2/O3-HEO

	Na	Mn	Fe	Ti	Ni	Mg	Zn	Cu
mass fraction %	18.99	24.37	9.41	2.40	10.02	1.29	4.02	4.03
Composition of atomic	0.826	0.443	0.168	0.050	0.170	0.053	0.062	0.063

Cathode materials	phase	specific capacity	voltage	cycle performance	refs
	type	(mAh g ⁻¹)	window		
$Na_{0.67}Fe_{0.425}Mn_{0.425}Mg_{0.15}O_2$	P2/O3	146.6 (0.1C)	1.5-4.2V	95.7%/1C, 50 cycles	4
$Na_{0.67}Fe_{0.5}Mn_{0.46}Mg_{0.04}O_2$	P2/O3	143.7 (1C)	1.5-4.2V	63.9%/1C, 70 cycles	5
$Na_{0.8}Ni_{0.4}Mn_{0.4}Ti_{0.2}O_2$	P2/O3	158 (0.1C)	2.0-4.2V	94%/0.5C, 200 cycles	6
$Na_{0.85}Ni_{0.34}Mn_{0.33}Ti_{0.33}O_2$	P2/O3	126.6 (0.1C)	2.2-4.4V	80.6%/1C, 200 cycles	7
$Na_{0.8}Mn_{0.6}Ni_{0.3}Cu_{0.1}O_2$	P2/O3	139 (0.1C)	1.5-4.2V	85%/0.2C, 100 cycles	8
$Na_{0.67}Fe_{0.425}Mn_{0.425}Cu_{0.15}O_2$	P2/O3	140.5 (0.1C)	2.0-4.2V	87.1%/1C, 100 cycles	9
$Na_{0.80}[Li_{0.12}Ni_{0.22}Mn_{0.66}]O_2$	P2	133 (0.1C)	2.0-4.4V	91%/0.1C, 50 cycles	10
$Na_{0.62}Mn_{0.67}Ni_{0.23}Cu_{0.05}Mg_{0.07}Ti_{0.01}O_2$	P2	148.2 (0.1C)	2.0-4.3V	87%/1C, 500 cycles	2
$NaLi_{0.1}Ni_{0.35}Mn_{0.55}O_2$	O3	160 (0.1C)	1.5-4.3V	85%/0.1C, 100 cycles	11
$NaNi_{0.32}Fe_{0.32}Mn_{0.32}Al_{0.02}Cu_{0.02}O_2$	03	146 (0.1C)	2.0-4.0V	81%/1C, 200 cycles	12
Р2/О3-НЕО	P2/O3	162 (0.1C)	2.0-4.3V	72.9%/5C, 300 cycles	This work

Table S6 Electrochemical performance comparison between this work and previously reported result

Reference

- 1. A. Sarkar, Q. Wang, A. Schiele, M. R. Chellali, S. S. Bhattacharya, D. Wang, T. Brezesinski, H. Hahn, L. Velasco and B. Breitung, *Advanced Materials*, 2019, **31**, 1806236.
- 2. F. Fu, X. Liu, X. Fu, H. Chen, L. Huang, J. Fan, J. Le, Q. Wang, W. Yang, Y. Ren, K. Amine, S.-G. Sun and G.-L. Xu, *Nature Communications*, 2022, **13**, 2826.
- 3. Y. Fan, X. Ye, X. Yang, L. Guan, C. Chen, H. Wang and X. Ding, *Journal of Materials Chemistry A*, 2023, **11**, 3608-3615.
- 4. D. Zhou, W. Huang, X. Lv and F. Zhao, *Journal of Power Sources*, 2019, **421**, 147-155.
- 5. D. Zhou, C. Zeng, D. Ling, T. Wang, Z. Gao, J. Li, L. Tian, Y. Wang and W. Huang, *Journal of Alloys and Compounds*, 2023, **931**, 167567.
- 6. X. Ma, H. Guo, J. Gao, X. Hu, Z. Li, K. Sun and D. Chen, *Journal*, 2023, **13**.
- 7. L. Yu, Z. Cheng, K. Xu, Y.-X. Chang, Y.-H. Feng, D. Si, M. Liu, P.-F. Wang and S. Xu, *Energy Storage Materials*, 2022, **50**, 730-739.
- 8. S. Saxena, H. N. Vasavan, M. Badole, A. K. Das, S. Deswal, P. Kumar and S. Kumar, *Journal of Energy Storage*, 2023, **64**, 107242.
- 9. P. Zhang, G. Zhang, Y. Liu, Y. Fan, X. Shi, Y. Dai, S. Gong, J. Hou, J. Ma, Y. Huang and R. Zhang, Journal of Colloid and Interface Science, 2024, **654**, 1405-1416.
- 10. J. Xu, D. H. Lee, R. J. Clément, X. Yu, M. Leskes, A. J. Pell, G. Pintacuda, X.-Q. Yang, C. P. Grey and Y. S. Meng, *Chemistry of Materials*, 2014, **26**, 1260-1269.
- 11. S. Zheng, G. Zhong, M. J. McDonald, Z. Gong, R. Liu, W. Wen, C. Yang and Y. Yang, *Journal of Materials Chemistry A*, 2016, **4**, 9054-9062.
- 12. S. Feng, C. Zheng, Z. Song, X. Wu, M. Wu, F. Xu and Z. Wen, *Chemical Engineering Journal*, 2023, **475**, 146090.