## Oxygen vacancies on CuGa<sub>2</sub> catalysts Enhances CO<sub>2</sub> Reduction to CO

Jiangfeng Mou<sup>a</sup>, Jin Hu<sup>a,\*</sup>, Tianyou Chen<sup>a,c\*</sup>, Kaizhao Wang<sup>a</sup>, Kaijun Wang<sup>a</sup>, WeiJun Zhang<sup>a</sup>, Shuai Wu<sup>b</sup>, Jin Shi<sup>b</sup>, Pengchong Zhao<sup>b</sup>.

- College of Materials Science and Engineering, Kunming University of Science and Technology, 121 Street, Wenchang Road 68, Kunming 650093, China
- b. State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, College of Metallurgy and Energy Engineering, Kunming University of Science and Technology, 121 Street, Wenchang Road 68, Kunming 650093, China
- Engineering Training Center, Kunming University of Science and Technology, Kunming 650093, China
- \* Corresponding author: hujin@kmust.edu.cn (Jin Hu); 20230152@kust.edu.cn (Tianyou Chen)

E-mail address: hujin@kmust.edu.cn (Jin Hu); 20230152@kust.edu.cn (Tianyou Chen)



Figure. S1. the wetting angles of Ga/Cu and O-Ga/Cu.



Figure. S2. Cross-sectional SEM maps and EDS elemental distribution of  $CuGa_2$ 

and O-CuGa $_2$ 



Figure.S3. Cyclic voltammograms of CuGa2 and O-CuGa2 at different potential



scan rates under different conditions.

Figure . S4 Faraday efficiency plots for Cu and CuGa<sub>2</sub>



Figure. S5 SEM characterisation of O-CuGa2 electrodes prepared from O-Ga with different oxidation times.



Figure. S6, Faraday efficiency plot of O-CuGa2 catalysts with different oxygen

contents

| Cathode             | Rs $(\Omega)$ | Ret $(\Omega)$ |
|---------------------|---------------|----------------|
| CuGa <sub>2</sub>   | 4.1           | 14.5           |
| O-CuGa <sub>2</sub> | 2.7           | 10.1           |

Table 1. Rs and Rct of  $CuGa_2$  and  $O\mathchar`O\mbox{-}CuGa_2$ 



Figure. S7, XRD of the O-CuGa<sub>2</sub> electrode before and after the reaction.



Figure .S8 XPS spectra of CuGa<sub>2</sub> and O-CuGa<sub>2</sub>

| Region | Species                         | Binding<br>energies<br>(eV) | FWHM<br>(CuGa <sub>2</sub> ) | FWHM (O-<br>CuGa <sub>2</sub> ) | Area<br>rations (Cu<br>Ga <sub>2</sub> ) | Area<br>rations (O-<br>CuGa <sub>2</sub> ) |
|--------|---------------------------------|-----------------------------|------------------------------|---------------------------------|------------------------------------------|--------------------------------------------|
| C 1s   | C-C                             | 284.8                       | 1.39                         | 1.43                            | 100%                                     | 100%                                       |
| O 1s   | Ga-O                            | 530.81                      | 1.48                         | 1.48                            | 49.1%                                    | 34.3%                                      |
|        | O <sub>V</sub>                  | 531.7                       | 1.53                         | 1.75                            | 30.0%                                    | 54.5%                                      |
|        | H <sub>2</sub> O <sub>ads</sub> | 532.45                      | 2.11                         | 3.09                            | 20.9%                                    | 11.2%                                      |
| Ga3d   | Ga <sup>0</sup>                 | 18.0                        | 1.09                         | 0.98                            | 18%                                      | 11%                                        |
|        | Ga <sub>2</sub> O <sub>3</sub>  | 20.4                        | 1.64                         | 1.88                            | 82%                                      | 89%                                        |
| Cu2p   | Cu                              | 932.9                       | 2.15                         | 2.02                            | 79.4%                                    | 75.7%                                      |
|        | Cu <sup>2+</sup>                | 952.5                       | 3.08                         | 2.44                            | 20.6%                                    | 24.3%                                      |

Table S2. Peak summary of the high resolution XPS analysis



Figure. S9 EPR tests of CuGa2 and O-CuGa2.

## Density functional theory (DFT) calculations.

The density functional theory computations were carried out by the CASTEP code, employing the ultrasoft pseudopotential <sup>1–3</sup>. The exchange correlation potential was represented by the Perdew-Burke-Ernzerhof (PBE) functional within the generalized gradient approximation (GGA)<sup>4</sup>. The Cu(111) and CuGa<sub>2</sub> (102) surface with five atomic layers was established. Periodic boundary conditions were employed along x and y directions with a vacuum region of 20 Å. The cutoff energy for the plane-wave-basis expansion is set to be 450 eV, and the convergence tolerances of energy, force and maximum displacement are set to  $2.0 \times 10^{-5}$  eV/atom,  $5.0 \times 10^{-2}$  eV/Å and  $2.0 \times 10^{-3}$  Å, respectively. The *k*-points grid sampling of Monkhorst-Pack scheme was set at  $2 \times 2 \times 1$ . Meanwhile, the DFT-D correction method is used to describe the

## $\int N(\varepsilon)\varepsilon d\varepsilon$

long-range van der Waals interaction<sup>5</sup>. To calculate the d-band center,  $\overline{\int N(\varepsilon)d\varepsilon}$  was conducted from 0 to -10.0 eV, where N( $\varepsilon$ ) is the density of states.

## **References:**

- 1 G. Kresse and D. Joubert, *Phys. Rev. B*, 1999, **59**, 1758–1775.
- 2 G. Kresse and J. Furthmüller, *Computational Materials Science*, 1996, **6**, 15–50.
- 3 G. Kresse and J. Furthmüller, *Phys. Rev. B*, 1996, **54**, 11169–11186.
- 4 J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865–3868.
- 5 S. Grimme, J. Antony, S. Ehrlich and H. Krieg, *The Journal of Chemical Physics*, 2010, **132**, 154104.