Supplementary Information (SI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Information

Design of nanostructured 2D (photo-)electrocatalysts for biomass valorization coupled with H₂ production

Bahareh Feizi Mohazzab,^{a*} Kiarash Torabi,^b and Dandan Gao^{a*}

^a Dr. Bahareh Feizi Mohazzab, Dr. Dandan Gao

Department of Chemistry, Johannes Gutenberg University Mainz

Duesbergweg 10-14, 55128 Mainz, Germany

E-mails: bahareh.feizimohazzab@uni-mainz.de; dandan.gao@uni-mainz.de

^b M.Sc. Kiarash Torabi

Department of Materials Engineering and Metallurgy, Faculty of Engineering

Arak University, Arak 3815688349, Iran

Fig. S1. Schematic illustration of catalytic mechanism for (a) HMF and (b) glucose. These figures have been reproduced from Ref.¹ with permission from Wiley, copyright 2021.

Fig. S2. Schematic illustration of catalytic oxidation pathways for lignin. This figure has been reproduced from Ref.² with permission from Elsevier, copyright 2019.

Table S1: An overview of biomass and	valorization involved in this review.
--------------------------------------	---------------------------------------

Biomass	Source	Catalytic reactions and products	Products applications	Developed catalysts	Ref.
HMF	 Dehydration of simple sugars like fructose Biomass: cellulose and lignocellulosic materials 	 C1 oxidation (aldehyde groups): 2,5- Furandicarboxylic Acid (FDCA) and 2,5- Diformylfuran (DFF) C6 oxidation (Hydroxymethyl Group): 5- Hydroxymethyl-2-furancarboxylic Acid (HMFCA) C1 reduction (Aldehyde Group): 2,5- Bis(hydroxymethyl)furan (BHMF) C6 reduction (Hydroxymethyl Group): 2,5- Dimethylfuran (DMF) 	 Bio-based Plastics (e.g. FDCA) Fine Chemicals (e.g. DFF and BHMF) Biofuels (e.g. DMF) 	 Ni, Co, Mo-based Metal nanoparticles: Pt, Pd Semiconductors: BiVO₄, WO₃, Fe₂O₃ 	3-15
Glucose	 Food Processing Residues Lignocellulosic biomass: 	 C1 oxidation (aldehyde groups): gluconic acid (GNA) C6 oxidation (hydroxymethyl groups): glucaric acid (GRA) C1-C2 cleavage: formic acid (FA) and arabinose (AR) C2-C3 cleavage: acetic acid (AA) C3-C4 cleavage: lactic acid (LA), and glycerol (GLY) Isomerism: Fructose 	 Food and Beverage Industry: As a sweetener and energy source Pharmaceuticals: For medical treatments and supplements Biofuels: As a feedstock for ethanol 	 Ni-based Metal nanoparticles: Pt, Pd, Semiconductors: Bi₂WO₆, BiVo₄ 	16-25
Lignin	 Wood Agriculture residues Grasses 	 OH and C₁-C_α oxidation: Benzoquinones (p-Benzoquinone, o-Benzoquinone, 2- Methoxy-1,4-benzoquinone, and 2,6-Dimethoxy-1,4-benzoquinone) Side-chain oxidation: Phenolic aldehydes (p Hydroxybenzaldehyde, Vanillin, and Syringaldehyde) Side-chain oxidation: Phenolic ketones (p- Hydroxyacetophenone, Acetovanillone, and Acetosyringone) 	 Animal Feed: As a binding agent Biofuels: As a renewable energy source Chemicals: For producing macromolecules used in bitumen, biofuels, and bio-refinery 	 Ni-based Metal oxide: IrO₂, PbO₂ Semiconductors: TiO₂, g-C₃N₄, CdS 	2, 26-36

•	Side-chain oxidation: Phenolic acids (p- Hydroxybenzoic acid, Vanillic acid, and Syringic acid)	catalysts
•	Ring-opening oxidation: Aliphatic	
	carboxylic acids (Formic acid, Acetic acid,	
	Succinic acid, and Malonic acid)	

Fig. S3. Schematic illustration of (a) the defects with different atomic arrangement structures (This figure has been reproduced from Ref.³⁷ with permission from Elsevier, copyright 2018), (b) recombination pathways of photo-generated electrons and holes on semiconductors with surface and bulk defects, (c) Schottky barrier (where ϕ_s and ϕ_m represent work function of semiconductor and metal, respectively.), and (d) the charge transfer mechanism for graphene-semiconductor heterostructure, (e) schematic of light penetration a flat film and nanosphere arrays (These figures have been reproduced from Ref.³⁸ with permission from American chemical society, copyright 2017.)

Fig. S4. Schematic illustration of (a) electrochemical lignin oxidation on Ni foam electrode and (b) influence of applied potential on lignin degradation. These figures have been reproduced from Ref.³⁹ with permission from European chemical societies publishing, copyright 2018.

Table S2. A comprehensive study of reported articles on HMF-, glucose-, and lignin-assisted H₂ production. (E_{OER//HER} and E_{BOR//HER} show required potential for conventional water electrolysis and hybrid water electrolysis, respectively.)

Anode Cathode	Electrolyte	E _{OER//HER} - E _{BOR//HER} / Current density (mA cm ⁻²)	Products Yields	Hydrogen production yields	Ref.
Heteroatom doping					
			FDCA		
BiCoO-NA/NF BiCoO-NA/NF	1 M KOH + 10 mM HMF	0.1 V / 50	FE: 97.7%	Yield: 7.33 µmol h ⁻¹	40
			Yield: 362.5 μ mol h ⁻¹		
	1.0 M KOH + 5		FDCA		41
Ni _{0.9} Cu _{0.1} (OH) ₂ Pt wire	mM HMF	0.29 V / 100	FE: 91.2%	-	41
Co@NPC-800 Co@NPC-800	1 M KOH+ 0.1 M glucose	0.18 V / 10	Lactic acid and	FE: 98.9%	
			formic acid		42
			FE: 45.4% and 15.2%		
			Lactic acid and formic		
Fe-Ni ₂ P@C/NF Fe-Ni ₂ P@C/NF	1 M KOH + 20		acid	FE: 98.2%	43
	mM glucose	0.11 V / 100	Yield: 52.1 % and 35.6		
			%		
Defect/vacancy engineering					
NiVW _v -LMH Pt foil	1.0 m KOH+ 10	0.26 V / 50	FDCA	-	44
	mM HMF		Yield: 99.2 %		-++
CuMn ₂ O ₄ -NH ₃ Pt wire	1.0 M KOH + 10 mM HMF	0.05 V / 20	FDCA	-	45

			FE: 96%		
Pt/def-TiO ₂ RNAs Pt foil	1 M KOH + 10 mM glucose Light condition: Xenon lamp (300 W, AM 1.5G filter, 100 mW cm ⁻²)	0.4 V / 1.2	gluconic acid (GLU) and glucaric acid (GLA) Yield: 84.3% and 9.2%	FE: 99%	46
Co-catalysts engineering					
Ni ₃ N-V ₂ O ₃ Ni ₃ N-V ₂ O ₃	1.0 M KOH +10 mM HMF	0.13 V / 10	FDCA Selectivity: 98.7% Yield: 96.1%	FE: 100%	47
Ir-NiFeO@NF Ir-NiFeO@NF	1.0 M KOH + 10 mM 1- phenylethanol	0.15 V / 100	Benzoic acids	0.45 mmol h ⁻¹ cm ⁻² FE: 100 %	48
Heterostructure design					
Ni/Ni _{0.2} Mo _{0.8} N/NF Ni/Ni _{0.2} Mo _{0.8} N/NF	1 M KOH + 50 mM HMF	1.4 V / 50	FDCA Yield: 98.5%	-	49
Ni _x Se _y –NiFe LDH@NF Pt sheet	Anolyte (1.0 M KOH + 10 mM HMF)/ catholyte (1.0 M KOH)	1 V / 40	FDCA FE: 96.7% Yield: 99.3%	-	50

Cu _x S@NiCo-LDHs Cu _x S@NiCo- LDHs	1 M KOH (pH 13.8) + 10 mM HMF	2.2 V / 100	FDCA FE: 100%	FE: 100%	51
Fe ₃ O ₄ /Au/CoFe-LDH Fe ₃ O ₄ /Au/CoFe-LDH	1 M KOH + 0.5 M glucose	1 V / 50	Gluconate FE: 100 % @ 50 mA cm ⁻²	99.6 % @ 50 mA cm ⁻²	52
β-PbO ₂ /MWNTs Pt black cathode	Anolyte: 1 M NaOH + 10 g L ⁻¹ lignin catholyte: 1M NaOH	-	-	98.7 % @ 20 mA cm ⁻²	53
NiCo/TiO ₂ Pt-loaded carbon clothe	Anolyte: 1 M NaOH + 50 g/L lignin Catholyte: 1 M NaOH	0.5 V / 10	-	FE: 100 %	54
Surface engineering					
t-NiCo-MOF) MoNi₄	1.0 M KOH + 10 mM HMF	0.3 V / 100	FDCA FE: 98%	-	55
NIS@NOSC NIS@NOSC	1.0 M KOH + 10 mM HMF	1.5 V / 50	FDCA Yield: 99.6%	FE: 100%	56
CoNW/NF CoNW/NF	1.0 M KOH + 100 mM HMF	0.3 / 50	FDCA Yield: 96.8% FE: 96.6%	FE: 100%	57
	0.5 M NaCl (pH: 7) + 0.1 M		Gluconic and Glucaric		

	glucose		Arabinose		
	Light condition: AM 1.5 G		Total FE: 64%		
CNF-60 CNF-60	1.0 M KOH + 0.15 M glucose	0.26 V / 10	-	-	59
NiSn _{20%} NiSn _{20%}	Anolyte: 1.0 M NaOH + 10 g l ⁻¹ Lignin Catholyte: 1.0 M NaOH	0.5 V / 10	Vanillin production rate: 300 g/kg lignin min ⁻¹	72 ml h-1	60
2D materials/ 3D supports					
Co ₃ O ₄ /CF Co ₃ O ₄ /CF	1.0 M KOH + 10 mM HMF	0.2 V / 50	FDCA FE: 92.9 %	FE: 99.8 %	61
Co(OH) ₂ -CeO ₂ Pt wire	0.1 M PBS + 10 mM HMF	0.2 V / 10	2-furancarboxylic acid (HMFCA) Selectivity: 89.4 % Yield: 85.8 %	114.39 μmol cm ⁻² h ⁻¹	62
CF@CoNC-2T CF@CoNC-2T	1 M KOH + 100 mM glucose	0.88 V / 100	Gluconic acid (GNA) and glucaric acid (GRA)	FE: 100 %	63
NiFeO _x NiFeN _x	1 M of KOH + 100 mM glucose	2.5 V / 100	Glucaric acid (GRA) FE: 87% Yield: 83%	-	64

1.0 I NF@Co ₃ S ₄ /(α , β)-NiS Pt sheets 1-phe	M KOH + 1 2-phenoxy- enylethanol 0.7 V / 60 (PPE)	Benzoate FE: 83.3%	-	65
--	--	-----------------------	---	----

3. Notes and References

- 1. H. Luo, J. Barrio, N. Sunny, A. Li, L. Steier, N. Shah, I. E. Stephens and M. M. Titirici, *Adv. Energy Mater.*", 2021, **11**, 2101180.
- 2. C. Liu, S. Wu, H. Zhang and R. Xiao, *Fuel Process. Technol.*, 2019, **191**, 181-201.
- 3. B. You, N. Jiang, X. Liu and Y. Sun, Angew. Chem., Int. Ed., 2016, 55, 9913-9917.
- 4. T.-W. Tzeng, C.-Y. Lin, C.-W. Pao, J.-L. Chen, R. J. G. Nuguid and P.-W. Chung, *Fuel Process. Technol.*, 2020, **199**, 106225.
- 5. S. P. Teong, G. Yi and Y. Zhang, *Green Chem.*, 2014, **16**, 2015-2026.
- 6. W.-J. Liu, L. Dang, Z. Xu, H.-Q. Yu, S. Jin and G. W. Huber, ACS Catal., 2018, 8, 5533-5541.
- 7. M. Cai, Y. Zhang, Y. Zhao, Q. Liu, Y. Li and G. Li, J. Mater. Chem. A, 2020, **8**, 20386-20392.
- 8. Q. Zhang, J. Zuo, L. Wang, F. Peng, S. Chen and Z. Liu, ACS omega, 2021, 6, 10910-10920.
- 9. C. Yang, C. Wang, L. Zhou, W. Duan, Y. Song, F. Zhang, Y. Zhen, J. Zhang, W. Bao and Y. Lu, *J. Chem. Eng.*, 2021, **422**, 130125.
- 10. M. Cai, Y. Zhang, Y. Zhao, Q. Liu, Y. Li and G. Li, *J. Mater. Chem. A*, 2020, **8**, 20386-20392.
- 11. S. R. Kubota and K.-S. Choi, *ChemSusChem*, 2018, **11**, 2138-2145.
- 12. A. S. Chauhan, A. Kumar, R. Bains, M. Kumar and P. Das, *Biomass and Bioenergy*, 2024, **185**, 107209.
- 13. H. G. Cha and K.-S. Choi, *Nat. Chem.*, 2015, **7**, 328-333.
- 14. C. R. Lhermitte, N. Plainpan, P. Canjura, F. Boudoire and K. Sivula, *RSC Adv.*, 2021, **11**, 198-202.
- 15. H. Yuan, P. Zhou, X. Gao, M. Xing, S. Lv, D. Zhang, H. Mou, Y. L. Pak and J. Song, *ACS Applied Nano Materials*, 2024, **7**, 10387-10395.
- 16. K. Lu, Y. Zhang, Y. Shen and H. Li, *Catal. Sci. Technol.*, 2024.
- 17. J. Wang, X. Wang, H. Zhao, J. F. Van Humbeck, B. N. Richtik, M. R. Dolgos, A. Seifitokaldani, M. G. Kibria and J. Hu, ACS Catal., 2022, **12**, 14418-14428.
- 18. W.-J. Liu, Z. Xu, D. Zhao, X.-Q. Pan, H.-C. Li, X. Hu, Z.-Y. Fan, W.-K. Wang, G.-H. Zhao and S. Jin, *Nat. Commun.*, 2020, **11**, 265.
- 19. S. Jana, A. Mondal and A. Ghosh, *Appl. Catal. B*, 2018, **232**, 26-36.
- 20. X. Liu, P. Cai, G. Wang and Z. Wen, *Int. J. Hydrogen Energy.*, 2020, **45**, 32940-32948.
- 21. M. P. Van der Ham, T. Hersbach, J. Delgado, B. Matson, J. Lim, M. Führer, T. Van Haasterecht, M. Verhoeven, E. Hensen and D. Sokaras, *Appl. Catal. B*, 2023, **338**, 123046.
- 22. D. Basu and S. Basu, Int. J. Hydrogen Energy., 2011, **36**, 14923-14929.
- 23. Y. Zhao, J. Dobson, C. Harabajiu, E. Madrid, T. Kanyanee, C. Lyall, S. Reeksting, M. Carta, N. B. McKeown and L. Torrente-Murciano, *Bioelectrochemistry*, 2020, **134**, 107499.
- 24. L. Madriz, J. Tatá, D. Carvajal, O. Núñez, B. R. Scharifker, J. Mostany, C. Borrás, F. M. Cabrerizo and R. Vargas, *Renewable Energy*, 2020, **152**, 974-983.
- 25. L. He, Z. Yang, C. Gong, H. Liu, F. Zhong, F. Hu, Y. Zhang, G. Wang and B. Zhang, J. Electroanal. Chem., 2021, 882, 114912.
- 26. W. Deng, Q. Zhang and Y. Wang, *Catal. Today*, 2014, **234**, 31-41.
- 27. S. Stiefel, A. Schmitz, J. Peters, D. Di Marino and M. Wessling, Green Chem., 2016, 18, 4999-5007.
- 28. D. Di Marino, D. Stöckmann, S. Kriescher, S. Stiefel and M. Wessling, *Green Chem.*, 2016, 18, 6021-6028.
- 29. S. Stiefel, J. Lölsberg, L. Kipshagen, R. Möller-Gulland and M. Wessling, *Electrochem. commun.*, 2015, **61**, 49-52.
- 30. M. Zirbes, L. Quadri, M. Breiner, A. Stenglein, A. Bomm, W. Schade and S. Waldvogel, *Eng*, 2020, **8**, 7300-7307.
- 31. R. Tolba, M. Tian, J. Wen, Z.-H. Jiang and A. Chen, J. Electroanal. Chem., 2010, 649, 9-15.
- 32. K. Pan, M. Tian, Z.-H. Jiang, B. Kjartanson and A. Chen, *Electrochim. Acta*, 2012, **60**, 147-153.
- 33. S. Sultana, K. Syrek and G. D. Sulka, *Sustainable Energy & Fuels*, 2024, **8**, 2383-2422.
- 34. X. Liu, Z. Jiang, X. Cao, Z. Shen, W. Zhao, F. Wang, M. Cui and C. Liang, *Green Chem.*, 2024, 26, 1935-1948.
- 35. Y. Lu, Y. Fan, S. Xu and Y. Li, *Catal. Sci. Technol.*, 2024, **14**, 2294-2304.
- 36. M. Zhang, Z. Li, Y. Feng, X. Xin, G.-Y. Yang and H. Lv, *Green Chem.*, 2023, **25**, 10091-10100.
- 37. S. Bai, N. Zhang, C. Gao and Y. Xiong, *Nano Energy*, 2018, **53**, 296-336.
- 38. Y. Zhou, L. Zhang, L. Lin, B. R. Wygant, Y. Liu, Y. Zhu, Y. Zheng, C. B. Mullins, Y. Zhao and X. Zhang, *Nano Lett.*, 2017, **17**, 8012-8017.
- 39. M. Zirbes, D. Schmitt, N. Beiser, D. Pitton, T. Hoffmann and S. R. Waldvogel, *ChemElectroChem*, 2019, **6**, 155-161.
- 40. T. Wei, W. Liu, S. Zhang, Q. Liu, J. Luo and X. Liu, *ChemComm*, 2023, **59**, 442-445.
- 41. J. Zhang, P. Yu, G. Zeng, F. Bao, Y. Yuan and H. Huang, J. Mater. Chem. A, 2021, 9, 9685-9691.
- 42. D. Li, Y. Huang, Z. Li, L. Zhong, C. Liu and X. Peng, J. Chem. Eng., 2022, 430, 132783.
- 43. D. Li, Z. Li, R. Zou, G. Shi, Y. Huang, W. Yang, W. Yang, C. Liu and X. Peng, *Appl. Catal. B*, 2022, **307**, 121170.
- 44. B. Zhang, Z. Yang, C. Yan, Z. Xue and T. Mu, *Small*, 2023, **19**, 2207236.
- 45. B. Zhu, Y. Qin, J. Du, F. Zhang and X. Lei, ACS Sustain Chem Eng, 2021, 9, 11790-11797.
- 46. Z. Tian, Y. Da, M. Wang, X. Dou, X. Cui, J. Chen, R. Jiang, S. Xi, B. Cui and Y. Luo, *Nat. Commun.*, 2023, **14**, 142.
- 47. S. Liang, L. Pan, T. Thomas, B. Zhu, C. Chen, J. Zhang, H. Shen, J. Liu and M. Yang, J. Chem. Eng., 2021, 415, 128864.

- 48. J. Miao, Y. Ma, X. Wang, Y. Li, H. Wang, L. Zhang, J. Zhang, Y. Qin and J. Gao, Appl. Catal. B, 2023, 122937.
- 49. M. Sun, J. Yang, J. Huang, Y. Wang, X. Liu, Y. Qi and L. Zhang, *Langmuir*, 2023, **39**, 3762-3769.
- 50. Y. Zhong, R.-Q. Ren, J.-B. Wang, Y.-Y. Peng, Q. Li and Y.-M. Fan, *Catal. Sci. Technol.*, 2022, **12**, 201-211.
- 51. X. Deng, X. Kang, M. Li, K. Xiang, C. Wang, Z. Guo, J. Zhang, X.-Z. Fu and J.-L. Luo, J. Mater. Chem. A, 2020, 8, 1138-1146.
- 52. F. Sun, Y. Zhou, Z. You, H. Xia, Y. Tuo, S. Wang, C. Jia and J. Zhang, *Small*, 2021, **17**, 2103307.
- 53. F. Bateni, M. NaderiNasrabadi, R. Ghahremani and J. A. Staser, J. Electrochem. Soc., 2019, 166, F1037.
- 54. M. NaderiNasrabadi, F. Bateni, Z. Chen, P. B. Harrington and J. A. Staser, J. Electrochem. Soc., 2019, 166, E317.
- 55. X. Deng, M. Li, Y. Fan, L. Wang, X.-Z. Fu and J.-L. Luo, *Appl. Catal. B*, 2020, **278**, 119339.
- 56. C. Sun, D. Zhang, Y. Zhao, C. Song and D. Wang, COLL SURF A COLLOID SURF A PHYSICOCHEM ENG, 2022, 650, 129597.
- 57. Z. Zhou, C. Chen, M. Gao, B. Xia and J. Zhang, *Green Chem.*, 2019, **21**, 6699-6706.
- 58. K. Jakubow-Piotrowska, B. Witkowski and J. Augustynski, *Commun. Chem.*, 2022, **5**, 125.
- 59. Y. Wang, W. Yan, M. Ni, C. Zhu and H. Du, ChemComm, 2023, 59, 2485-2488.
- 60. R. Ghahremani, F. Farales, F. Bateni and J. A. Staser, *J. Electrochem. Soc.*, 2020, **167**, 043502.
- 61. C. Chen, Z. Zhou, J. Liu, B. Zhu, H. Hu, Y. Yang, G. Chen, M. Gao and J. Zhang, *Appl. Catal. B*, 2022, **307**, 121209.
- 62. Y. Xie, L. Sun, X. Pan, Z. Zhou and G. Zhao, *Appl. Catal. B*, 2023, **338**, 123068.
- 63. Y. Xin, F. Wang, L. Chen, Y. Li and K. Shen, *Green Chem.*, 2022, **24**, 6544-6555.
- 64. W.-J. Liu, Z. Xu, D. Zhao, X.-Q. Pan, H.-C. Li, X. Hu, Z.-Y. Fan, W.-K. Wang, G.-H. Zhao, S. Jin, G. W. Huber and H.-Q. Yu, *Nat. Commun.*, 2020, **11**, 265.
- 65. N. Wang, R. Xue, N. Yang, H. Sun, B. Zhang, Z. Ma, Y. Ma and L. Zang, J. Alloys Compd., 2022, 929, 167324.