Supporting Information

Electrosynthesis of NH₃ from N₂ using nanostructured Bi₄Ti₃O₁₂ catalyst

Meera Sebastian^{a,c}, Subrata Das^{b,c}, Nishanth Karimbintherikkal Gopalan^{a,c,*} ^aCentre for Sustainable Energy Technologies(C-SET), CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695019, India. ^bMaterial Sciences and Technologies Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695019, India. ^cAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. *Corresponding author. Tel.: +91471 2515508; Fax: +91471 2491712 E-mail address: <u>nishanthkg@niist.res.in</u>

Fig. S1 (a) UV-Vis absorption spectra of various known concentrations of NH₃ and(b) calibration curve to find out the NH₃ concentrations. (c) UV-Vis absorption spectra of different known concentrations of N₂H₄ and (d) associated calibration curve to analyze the N₂H₄ concentrations

Fig. S2 (a)XRD analysis, (b) UV-Vis absorption spectra and (c) corresponding NRR yield obtained for the catalyst calcined at different temperatures

Fig. S3 Electrochemical double-layer capacitance (C_{dl}) measurements with different scanning rates of 5~30 mV s ⁻¹ for TiO₂ (a,b) and Bi₄Ti₃O₁₂ (c,d).