Supplementary Information (SI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Near-infrared driven photocatalytic hydrogen production from ammonia borane hydrolysis using heterostructure-upconverted nanoparticles

Bushra Maryam^a, Muhammad Asim^{b*}, Hamna Qayyum^c, Lun Pan^b, Ji-Jun Zou^{b*}, Xianhua Liu^{a*}

- a. School of Environmental Sciences and Engineering, Tianjin University, Tianjin 300072, China
- b. Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 China
- c. National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China

*Corresponding Author

Xianhua Liu – School of Environmental Sciences and Engineering, Tianjin University, Tianjin 300072, China

Email: <u>lxh@tju.edu.cn</u>

Schematic S1: Synthesis and fabrication process of heterogenous UCNPs, PS@UCNPs, and Pt@UCNPs.

Figure S1: TEM EDX elemental mapping of UCNPs. (a) Nanoparticles TEM image (b) Yb, (c) Y, (d) F, (e) Na, and (f) Er elemental map; (g) particle size distribution along TEM image, (h) EDX elemental graph.

Figure S2: TEM images and interplanar spacing of material. (a) UCNPs, (b) PS@UCNPs (c) Pt@UCNPs, (d) d-spacing of UCNPs, (e) d-spacing of PS@UCNPs, and (f) d-spacing of Pt@UCNPs.

	Peak	20	θ	d=nλ/2sinΘ
	100	17.25	8.62	5.13637066
	110	29.98	14.99	2.97756832
UCNPs /	200	30.97	15.48	2.88516905
PS@UCNPs	111	38.93	19.46	2.31144436
	201	43.64	21.82	2.07241527
	211	53.76	26.88	1.70373846
Pt@UCNPs	200	46.48	23.24	1.95218507
	111	39.68	19.84	2.26962887
	222	86.67	43.33	1.1224563

Table S1: interplanar spacing (d-spacing) calculated by XRD planes.

Figure S3: TEM EDX elemental mapping of PS@UCNPs after five cycles. (a) Nanoparticles TEM image (b) C, (c) Y, (d) Yb, (e) F, and (f) Na elemental map.

Figure S4: TEM EDX elemental mapping of Pt@UCNPs after five cycles. (a) Nanoparticles TEM image (b) Na, (c) Y, (d) Pt, (e) Yb, and (f) F elemental map.

Figure S5: TEM-EDX elemental graph of PS@UCNPs and Pt@UCNPs after five cycles. (a) PS@UCNPs elemental graph, and (b) Pt@UCNPs elemental graph.

Figure S6: Photo-catalytic activity of PS@UCNPs and Pt@UCNPs. Hydrogen evolution rate of (a) UCNPs, PS@UCNPs, and Pt@UCNPs, (b) the effect of PS@UCNPs concentration, (c) the effect of AB concentration in the presence of PS@UCNP, (d) the effect of Pt@UCNPs amount, (e) the effect of AB concentration in the presence of Pt@UCNPs.

Sample	Contents (Weight %)				
	Yb	Er	Pt		
UCNPs	20.01 ± 0.02	2.89 ± 0.02	-		
PS@UCNPs	19.97 ± 0.01	2.86 ± 0.01	-		
Pt@UCNPs	19.98 ± 0.02	2.85 ± 0.01	1.90 ± 0.01		

Table S2: ICP-OES results of the solid samples obtained by digestion. Data are given as average \pm SD (n=3).

Sample	Contents (Weight %)				
	Yb	Er	Pt		
PS@UCNPs	18.26 ± 0.02	1.95 ± 0.01	-		
Pt@UCNPs	14.50 ± 0.01	0.95 ± 0.01	1.75 ± 0.03		

Table S3: ICP-OES results of the solid samples obtained by digestion after five cycles. Data are given as average \pm SD (n=3).