Supporting Information

Scalable one-pot synthesis of amorphous iron-nickel-boride bifunctional electrocatalysts for enhanced alkaline water electrolysis

Bennett Schmitt^a, Eva Murphy^a, Sinny J. Trivedi^b, Qiancheng Zhang^b, Brian J. Rodriguez^b, Aran Rafferty^c, Raman Bekarevich^d, Gabor Ersek^e, Giuseppe Portale^e, M. Veronica Sofianos^{a,*}

^aSchool of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland

^bSchool of Physics, and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland

^cAMBER Research Centre, Naughton Institute, Trinity College Dublin, Dublin 2, D02PN40, Ireland

^dAdvanced Microscopy Laboratory, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland

^ePhysical Chemistry of Polymeric and Nanostructured Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG The Netherlands

*E-mail: <u>mvsofianou@gmail.com</u>

Figure S1. Nyquist plots obtained from EIS for FeNiB-I, FeNiB-II and FeNiB-III and the inset shows the equivalent circuit.

Table S1. Representing the resistance values obtained by fitting the EIS data from Nyquist plots.

Sample	$R_{s}(\Omega)$	Charge transfer resistance (Ω)	CPE Y0
			(F)
FeNiB-I	5.06	1908	4.41 x 10 ⁻⁵
FeNiB-II	6.38	1946	4.15 x 10 ⁻⁵
FeNiB-III	5.03	1119	1.70 x 10 ⁻⁵

Figure S2. Corrected and un-corrected OER LSV curves of (a) FeNiB-I, (b) FeNiB-II, (c) FeNiB-III

Figure S3. Corrected and un-corrected HER LSV curves of (a) FeNiB-I, (b) FeNiB-II, (c) FeNiB-III.

Table S2. The roughness of each sample, as determined from 5 μ m × 5 μ m AFM topography images (n = 3).

Sample	Roughness (nm)
FeNiB-I	126 ± 25
FeNiB-II	254 ± 23
FeNiB-III	67 ± 10

Table S3. Maximum current in a ± 3.0 V range, as determined from C-AFM IV measurements.

Sample	Max current
FeNiB-I (n=59/60)	4.9 ± 1.5 nA
FeNiB-II (n=35/160)	$43.1\pm20.5\ pA$
FeNiB-III (n=60/60)	8.0 ± 5.6 nA

Table S4. Resistance, as determined from maximum current.

Sample	Resistance	
FeNiB-I (n=59/60)	$649\pm205\;M\Omega$	
FeNiB-II (n=35/160)	$82\pm 30~G\Omega$	
FeNiB-III (n=60/60)	$782\pm926~M\Omega$	

Figure S4. CV measurements in the non-Faradaic region (around the 0.62 V versus RHE) for FeNiB-I (a), FeNiB-II (b) and FeNiB-III (c). In this region scan rates were of 120, 100, 80, 60, 40, 20 mV s⁻¹ were used to measure the current density and calculate the double layer capacitance (C_{dl}). The C_{dl} values were obtained by measuring gradients of current density versus scan rate for FeNiB-I (d), FeNiB-II (e) and FeNiB-III (f).

Table S5. Calculated double layer capacitance and electrochemical surface area.

Sample	C _{dl} (μF cm ⁻²)	ECSA (cm ²)
FeNiB-I	132.46	3.32
FeNiB-II	94.26	2.36
FeNiB-III	127.86	3.20