Electronic Supplementary Information

A novel high-entropy layered cathode with robust structure and fast dynamics at high rate for Na-ion batteries

Minghui Cao *a, Miao Cui a, Yiping Gong a, Zewei Guo a, Shuangqing Le a, Jingyang Tian a,

Yuanping Jiang ^a, Zulipiya Shadike ^{*b} and Chong Lin ^{*a}

^a Jiangxi Province Key Laboratory of Functional Organic Polymers, School of Chemistry and

Materials, East China University of Technology, Nanchang, 330013, China

E-mail: mhcao@ecut.edu.cn

E-mail: lin_chong@ecut.edu.cn

^b Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University,

Shanghai, 200240, China

E-mail: zshadike@sjtu.edu.cn

Elements	W (%)	mol ratio
Na	16.33	0.66(8)
Mn	34.73	0.59(3)
Li	0.83	0.11(3)
Ti	4.93	0.09(7)
Mg	1.19	0.04(7)
Al	1.47	0.05(1)
Cu	3.58	0.05(3)
Zn	3.25	0.04(7)

Table S1. Stoichiometry from inductively coupled plasma optical emission spectrometry/mass

 spectrometry (ICP-OES/MS) results of NMLTMACZ.

<i>P63/mmc</i> , <i>a</i> = <i>b</i> =	= 2.88(6) Å,	c = 11.16	$b(0)$ Å, $\alpha = \beta =$	= 90°, $\gamma = 12$	$20^{\circ}, R_{wp}=5.45^{\circ}$	$\gamma_0, \chi^2 = 0.8360.$
Sample	Atom	Site	Х	У	Z	Occupancy
	Mn	2a	0	0	0	0.589(7)
	Li	2a	0	0	0	0.112(3)
	Ti	2a	0	0	0	0.098(2)
	Mg	2a	0	0	0	0.047(8)
	Al	2a	0	0	0	0.051(3)
NMLIMACZ	Cu	2a	0	0	0	0.053(2)
	Zn	2a	0	0	0	0.047(6)
	Na1	2b	0	0	0.25	0.328(4)
	Na2	2d	0.3333	0.6667	0.75	0.332(6)
	0	4f	0.3333	0.6667	0.0872	1
P63/	/mmc : a = .	b = 2.885	9(3) Å $c = 11$.1596(4) Å	V= 80.49(2) Å ³
	$R_p = 4$.24%	$R_{wp} = 5.45\%$	$GOF(\chi^2)$	= 0.8360	-

Table S2. Refined crystallographic parameters of NMLTMACZ with the Rietveld method. S.G.

Fig. S1. Typical galvanostatic charge/discharge profiles (1st, 2nd, 5th, 10th, 20th, 50th, 100th) of the NMLTMACZ electrode at 0.05C in the voltage range of 1.5-4.5 V vs. Na⁺/Na.

Electrode materials	Voltage range (V)	Initial reversible capacity (mAh/g)	Capacity at high- rate (mAh/g)	Capacity retention After cycling	Reference
$P2\text{-}Na_{0.72}Li_{0.24}Mn_{0.76}O_2$	1.5-4.5	270 (0.05C)	/	55.5% (0.1C, 30 cycles)	S 1
$P2\text{-}Na_{0.66}Li_{0.18}Fe_{0.12}Mn_{0.7}O_2$	1.5-4.5	214 (0.05C)	120 (1C)	81.7% (0.1C, 82 cycles)	S2
$P2\text{-}Na_{0.6}Li_{0.11}Fe_{0.27}Mn_{0.62}O_2$	1.5-4.5	207.3 (0.1C)	126.2 (1C)	50.3% (0.1C, 80 cycles)	S 3
$P2\text{-}Na_{0.6}Li_{0.11}Fe_{0.26}Mn_{0.62}Y_{0.01}O_2$	1.5-4.5	215.2 (0.1C)	125.6 (2C)	66.2% (0.1C, 80 cycles)	S4
$P2\text{-}Na_{2/3}[Zn_{0.3}Mn_{0.7}]O_2$	1.5-4.6	190 (0.1C)	60 (2C)	80% (26 mA/g , 200 cycles)	S5
$P2\text{-}Na_{4/7}[Mn_{6/7}(\Box_{Mn})_{1/7}]O_2$	1.5-4.4	220 (0.1C)	/	75% (0.1C , 45 cycles, 2.3-4.2 V)	S 6
$P2-Na_{0.6}Mg_{0.3}Mn_{0.7}O_2$	1.5-4.4	210 (0.05C)	52 (2C)	50% (0.05C, 50 cycles)	S 7
$P3-Na_{2/3}Mg_{1/3}Mn_{2/3}O_2.$	1.6-4.4	222 (0.05C)	75 (2C)	76.5% (0.1C, 30 cycles)	S 8
$P2\text{-}Na_{0.67}Mg_{0.2}Mn_{0.8}O_2$	1.8-3.8	158 (0.1C)	107 (5C)	96% (0.1C, 25 cycles)	S9
$P2\text{-}Na_{0.7}Mn_{0.6}Ni_{0.2}Mg_{0.2}O_2$	1.5-4.2	130 (0.2C)	72 (2C, 2.5-4.2 V)	79% (1C, 1000 cycles)	S10
$P2\text{-}Na_{2/3}[Fe_{1/3}Mg_{1/12}Mn_{7/12}]O_2$	1.5-4.5	253 (0.1C)	115.4 (2C)	50.8% (0.1C, 100 cycles)	S11
$P2\text{-}Na_{0.773}Mg_{0.03}Li_{0.25}Mn_{0.75}O_2$	2.0-4.5	192 (15 mA/g)	119 (600 mA/g)	59.7% (20 mA/g, 100 cycles, 2.6-4.5 V)	S12
$P2\text{-}Na_{0.67}Mg_{0.1}Zn_{0.1}Mn_{0.8}O_2$	1.5-4.5	230 (0.1C)	125 (5C)	71.7% (0.1C, 50 cycles)	S13
$P2\text{-}Na_{0.6}Mg_{0.15}Mn_{0.7}Cu_{0.15}O_2$	2.0-4.5	157 (0.1C)	88.5 (2C)	95.8% (1C, 200 cycles)	S14
$P2\text{-}Na_{2/3}Mn_{0.72}Cu_{0.22}Mg_{0.06}O_2$	2.0-4.5	107.6 (0.1C)	87.4 (2C)	87.9% (1C, 100 cycles)	S15
$P2\text{-}Na_{0.75}Li_{0.2}Mg_{0.05}Al_{0.05}Mn_{0.7}O_2$	1.5-4.5	245 (0.05C)	80 (2C)	54% (0.05C, 50 cycles)	S16
$P2\text{-}Na_{0.84}Mn_{0.67}Ni_{0.3\text{-}x}Mg_x\square_{0.03}O_2$	1.8-4.4	153 (0.1C)	117.3 (2C)	98.3% (0.1C, 50 cycles)	S17
$P2\text{-}Na_{0.66}Li_{0.18}Mn_{0.71}Mg_{0.21}Co_{0.08}O_2$	1.5-4.5	166 (0.1C)	110.8 (1C)	82% (0.1C, 100 cycles)	S18
$P2\text{-}Na_{0.67}Mn_{0.71}Cu_{0.02}Mg_{0.02}Ni_{0.25}O_2$	1.5-4.5	152 (0.1C)	108 (2C)	86% (0.1C, 100 cycles)	S19
P2-Na0.66Mn0.6Li0.1Ti0.1(MgAlCuZn)0.05O2	1.5-4.5	245.6 (0.05C)	147.2 (1C)	77.86% (1C, 100 cycles)	This work

Table S3. Comparison of the electrochemical properties of Na layered cathode materials with O redox reaction.

Fig. S2. The charge/discharge profiles at different current rates (0.1C-10C) of the NMLTMACZ electrode in the voltage range of 1.5-4.5 V vs. Na⁺/Na.

Fig. S3. Typical galvanostatic charge/discharge profiles (1^{st} , 2^{nd} , 5^{th} , 10^{th} , 20^{th} , 50^{th} , 100^{th} , 200^{th}) of the NMLTMACZ electrode within the voltage ranges of (a) 2.0-4.5 V and (b) 2.5-4.5 V vs. Na⁺/Na at 0.1C. Typical galvanostatic charge/discharge profiles (1^{st} , 2^{nd} , 5^{th} , 10^{th} , 20^{th} , 50^{th} , 10^{th} , 200^{th}) of the NMLTMACZ electrode within the voltage ranges of (c) 2.0-4.5 V and (d) 2.5-4.5 V vs. Na⁺/Na at 1C. The charge/discharge profiles at different current rates (0.1C-10C) of the NMLTMACZ electrode within the voltage ranges of (e) 2.0-4.5 V and (f) 2.5-4.5 V vs. Na⁺/Na.

Table S4. Fitting results of the impedance parameters and the corresponding ion conductivitiesof the NMLTMACZ during 100 cycles at 0.1C and 1C.

Current rate	State	$R_{e}(\Omega)$	$R_{ct}(\Omega)$	σ (S/cm)	$D_{Na}^{+}(cm^{2}/s)$
	1^{st}	3.24	452.86	3.13×10^{-6}	1.06×10^{-15}
	2^{nd}	3.06	278.33	5.09×10^{-6}	1.34×10^{-14}
	5^{th}	2.84	94.82	1.49×10^{-5}	1.42×10^{-13}
0.1C	10^{th}	2.93	99.62	1.42×10^{-5}	6.48×10^{-14}
	20^{th}	3.03	104.41	1.36×10^{-5}	4.64×10^{-14}
	50 th	3.14	152.23	9.30×10^{-6}	2.52×10^{-14}
	100^{th}	3.17	171.34	8.26×10^{-6}	2.27×10^{-14}
	1^{st}	3.04	192.01	7.37×10^{-6}	2.12×10^{-15}
	2^{nd}	2.69	131.33	1.08×10^{-5}	2.21×10^{-14}
	5^{th}	3.05	115.98	1.22×10^{-5}	3.01×10^{-14}
1C	10^{th}	2.96	110.02	1.29×10^{-5}	4.61×10^{-14}
	20^{th}	2.94	105.95	1.34×10^{-5}	4.99×10^{-14}
	50 th	2.58	99.96	1.42×10^{-5}	5.29×10^{-14}
	100^{th}	2.43	59.99	2.36×10^{-5}	1.64×10^{-13}

Table S5. Binding energies (eV) and atomic percentages (%) of the main components in the Mn 2p XPS spectra of the NMLTMACZ electrode cycled at 0.1C and 1C, respectively.

		().1C						1C		
					Average						Average
Element	State	Species	BE (eV)	%	oxidation	Element	State	Species	BE (eV)	%	oxidation
					state						state
	Duisting	Mn ³⁺	641.0/652.4	37.2	2.62		Duiatina	Mn ³⁺	641.1/652.6	36.9	2.62
	Pristine	Mn^{4+}	642.1/653.5	62.8	3.03+		Pristine	Mn^{4+}	642.1/653.7	63.1	3.03+
		Mn ³⁺	641.0/652.7	25.7				Mn ³⁺	641.1/652.1	31.0	
Mn 2p	1 st ch	Mn^{4+}	642.1/653.7	74.3	3.74+	Mn 2p	1 st ch	Mn^{4+}	642.6/654.0	61.9	3.66+
Ĩ		/	/	/		-		C-F/Na-F	646.3	7.1	
		Mn ²⁺	647.4	2.7				/	/	/	
	1 st dis	Mn ³⁺	641.0/652.4	73.8	3.21+		1 st dis	Mn^{3+}	641.0/652.6	66.8	3.33+
		Mn^{4+}	642.4/653.9	23.5				Mn^{4+}	642.3/653.9	33.2	
	2 nd ch	Mn ³⁺	641.4/652.4	24.7	3.75+		2 nd ch	Mn ³⁺	641.2/652.7	36.5	3.63+

		Mn ⁴⁺	642.7/654.0	75.3				Mn ⁴⁺	642.3/653.8	63.5	
		Mn ²⁺	648.8	2.6				/	/	/	
	and 1:	Mn^{3+}	641.0/652.5	70.5	2.21		2 dis	Mn^{3+}	641.0/652.4	66.9	3.33+
	2 nd dis	Mn^{4+}	642.4/653.4	23.3	3.21+			Mn^{4+}	643.1/653.8	33.1	
		C-F/Na-F	645.6	3.6				/	/	/	
Mn 2p		Mn ²⁺	638.1/650.4	4.2		Mn 2p		/	/	/	
	eth -1-	Mn^{3+}	641.1/652.6	22.1	2 (0)		€th -1-	Mn ³⁺	641.4/652.6	33.0	2 (1)
	5 cn	Mn^{4+}	642.2/653.9	72.5	3.09+		5 cn	Mn^{4+}	642.5/653.6	52.8	3.01+
		C-F/Na-F	647.0	1.2				C-F/Na-F	646.3	14.1	
		Mn ²⁺	647.8	13.5				/	/	/	
	5 th dis	Mn ³⁺	641.1/652.9	56.3	3.17+		5 th dis	Mn ³⁺	641.0/652.6	66.7	3.33+
		Mn^{4+}	642.7/654.7	30.2				Mn^{4+}	642.7/654.2	33.3	

Table S6. Binding energies (eV) and atomic percentages (%) of the main components in the O 1s XPS spectra of the NMLTMACZ electrode cycle
at 0.1C and 1C, respectively.

		0.1C					1C		
Element	State	Species	BE (eV)	%	Element	State	Species	BE (eV)	%
	Pristine	O ²⁻	529.7	62.6		Pristine	O ²⁻	530.1	62.7
	THStille	$(O_2)^{n-1}$	/	/		THStine	$(O_2)^{n-1}$	/	/
	1 st ob	O ²⁻	529.6	9.2		1 st ob	O ²⁻	529.6	11.9
		$(O_2)^{n-1}$	530.6	14.5		I CII	$(O_2)^{n-1}$	530.6	8.8
O 1s	1 st dis	O ²⁻	530.2	50.1	O 1s	1 st dis	O ²⁻	530.1	56.2
		$(O_2)^{n-1}$	/	/			$(O_2)^{n-1}$	/	/
	2 nd ch	O ²⁻	529.9	12.8		2 nd ch	O ²⁻	529.6	9.5
	2 01	$(O_2)^{n-1}$	530.5	12.4		2 011	$(O_2)^{n-1}$	530.5	8.2
	2 nd dis	O ²⁻	530.1	43.0		2 nd dis	O ²⁻	530.1	54.6
	2 uis	$(O_2)^{n-1}$	/	/		2 015	$(O_2)^{n-1}$	/	/
	5 th ch	O ²⁻	529.7	11.0		5 th ch	O ²⁻	529.2	9.9

		$(O_2)^{n-1}$	530.4	11.3			$(O_2)^{n-1}$	530.6	8.6
O 1s	5 th dia	O ²⁻	530.1	42.2	O 1s	5 th die	O ²⁻	530.0	55.4
	5 UIS	$(O_2)^{n-1}$	/	/		J uis	$(O_2)^{n-1}$	/	/

References

- S1 X. Rong, E. Hu, Y. Lu, F. Meng, C. Zhao, X. Wang, Q. Zhang, X. Yu, L. Gu, Y. S. Hu, H. Li, X. Huang, X. Q. Yang, C. Delmas and L. Chen, *Joule*, 2019, 3, 503-517.
- S2 L. Yang, X. Li, J. Liu, S. Xiong, X. Ma, P. Liu, J. Bai, W. Xu, Y. Tang, Y. Y. Hu, M. Liu and H. Chen, *J. Am. Chem. Soc.*, 2019, **141**, 6680-6689.
- S3 M. H. Cao, R. Y. Li, S. Y. Lin, S. D. Zheng, L. Ma, S. Tan, E. Hu, Z. Shadike, X. Q. Yang and Z. W. Fu, *J. Mater. Chem. A*, 2021, 9, 27651-27659.
- S4 M. H. Cao, R. Y. Li, F. F. Huang, X. Y. Cai, M. Cui, S. Y. Lin, J. Y. Tian, Y. P. Jiang, Z. Shadike and Z. W. Fu, *New J. Chem.*, 2023, **47**, 12109-12116.
- S5 A. Konarov, J. H. Jo, J. U. Choi, Z. Bakenov, H. Yashiro, J. Kim and S. T. Myung, *Nano energy*, 2019, **59**, 197-206.
- S6 Y. Li, X. Wang, Y. Gao, Q. Zhang, G. Tan, Q. Kong, S. Bak, G. Lu, X. Q. Yang, L. Gu, J. Lu, K. Amine, Z. Wang and L. Chen, *Adv. Energy Mater.*, 2019, 9, 1803087.
- S7 X. Rong, F. Gao, Y. Lu, K. Yang and Y. Hu, Chinese Chem. Lett., 2018, 29, 1791-1794.
- S8 B. Song, E. Hu, J. Liu, Y. Zhang, X. Q. Yang, J. Nanda, A. Huq and K. Page, *J. Mater. Chem. A*, 2019, **7**, 1491-1498.
- S9 E. J. Kim, L. A. Ma, D. M. Pickup, A. V. Chadwick, R. Younesi, P. Maughan, J. T. S. Irvine and A. R. Armstrong, *ACS Appl. Energy Mater.*, 2020, **3**, 10423-10434.
- S10 Q. C. Wang, J. K. Meng, X. Y. Yue, Q. Q. Qiu, Y. Song, X. J. Wu, Z. W. Fu, Y. Y. Xia,
 Z. Wu, J. Shadike, X. Q. Yang and Y. N. Zhou, *J. Am. Chem. Soc.*, 2018, 141, 840-848.
- S11 M. H. Cao, R. Y. Li, Q. W. Sun, Cui, M. Z. W. Guo, L. Ma, Z. Shadike and Z. W. Fu, J. Mater. Chem. A, 2024, 12, 13841-13851.
- S12 Y. Huang, Y. Zhu, A. Nie, H. Fu, Z. Hu, X. Sun, S. C. Haw, J. M. Chen, T. S. Chan, S. Yu, G. Sun, G. Jiang, J. Han, W. Luo and Y. Huang, *Adv. Mater.*, 2022, **34**, 2105404.
- S13 H. Ji, W. Ji, H. Xue, G. Chen, R. Qi, Z. Huang, H. Fang, M. Chu, L. Liu, Z. Ma, S. Xu, J. Zhai, W. Zeng, C. Schulz, D. Wong, H. Chen, J. Xu, W. Yin, F. Pan and Y. Xiao, *Sci. Bull.*, 2023, **68**, 65-76.
- S14 C. Cheng, C. Chen, S. Chu, H. Hu, T. Yan, X. Xia, X. Feng, J. Guo, D. Sun, J. Wu, S. Guo and L. Zhang, *Adv. Mater.*, 2022, **34**, 2201152.
- S15 P. F. Wang, Y. Xiao, N. Piao, Q. C. Wang, X. Ji, T. Jin, Y. J. Guo, S. Liu, T. Deng, C. Cui, L. Chen, Y. G. Guo, X. Q. Yang and C. Wang, *Nano Energy*, 2020, **69**, 104474.
- S16 X. Chen, C. Cheng, M. Ding, Y. Xia, L. Y. Chang, T. S. Chan, H. Tang, N. Zhang and L. Zhang, *ACS Appl. Mater. Interfaces*, 2020, **12**, 43665-43673.
- S17 Y. Hou, J. Jin, C. Huo, Y. Liu, S. Deng and J. Chen, *Energy Storage Mater.*, 2023, **56**, 87-95.
- S18 J. Xiao, F. Zhang, K. Tang, X. Li, D. Wang, Y. Wang, H. Liu, M. Wu and G. Wang, *ACS Cent. Sci.*, 2019, **5**, 1937-1945.
- S19 W. Kong, R. Gao, Q. Li, W. Yang, J. Yang, L. Sun and X. Liu, *J. Mater. Chem. A*, 2019, 7, 9099-9109.