Supporting information

Enhanced thermoelectric properties of Cu_{1.8}S via introducing ZnS nanostructures

Gouri Sankar^a, Madhuvathani Saminathan^b, Suresh Perumal^c, Tamilarasi R^a and Geetha

Arunachalam a^*

^a Department of Physics and Nanotechnology, Faculty of Engineering and Technology,

SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India

^bDepartment of Electrical Engineering, Indian Institute of Technology Madras (IIT M),

Chennai, Tamil Nadu, 600036, India

^c Laboratory for Energy and Advanced Devices (LEAD), Department of Materials Science

and Metallurgical Engineering, Indian Institute of Technology Hyderabad (IIT H), Kandi,

Sangareddy, Telangana 502284, India.

*Corresponding author e-mail: *geethaa@srmist.edu.in

Figure S1 (a) Lattice parameters, (b) the cell volume of pellet samples and (c) crystallite size and micro strain plotted with respect to ZnS (x %) contents, respectively

Figure S2 Optical absorption spectra of $Cu_{1.8}S+x$ wt.% ZnS (x = 0, 5, 10 and 20) samples

Figure S3 (a) specific heat capacity (C_p), (b) diffusivity (D), (c) and Lorentz number, (d) electronic thermal conductivity (κ_e), (e) lattice thermal conductivity (κ_l) of Cu_{1.8}S+ x wt.% ZnS (x = 0, 5, 10 and 20) as a function of temperature

Figure S4 Repeatability graph of temperature-dependent (a) PF and (b) zT for $Cu_{1.8}S+5\%$ ZnS composited sample (trial-2) in comparison with early result (trial-1) in the range of 323-573 K and cooling temperature dependent zT.