SUPPORTING INFORMATION

Shaping the future of methanol production through carbon dioxide utilisation strategies

Javier Fernández-González, Marta Rumayor*, Jara Laso, Antonio Domínguez-Ramos, Angel Irabien

University of Cantabria, Department of Chemical and Biomolecular Engineering, Av. Los Castros s/n, 39005, Santander, Spain

* Corresponding author:

Marta Rumayor: University of Cantabria, Department of Chemical and Biomolecular Engineering Av. Los Castros s/n, 39005 Santander, Spain;

E-mail: marta.rumayor@unican.es

Contents:

Number of pages: 2

Number of tables: 2

Supplementary Note 1 – Process Inventory for direct e-MeOH (CO₂ER)

Inventory for the CO₂ electrolysis process is given (Table S1). Cathode elements are adapted for MeOH production from a previous work.¹, assuming CuO₂ as catalyst at a load of 1.8 mg/cm². A proton exchange membrane (Nafion 117) is used. Platinum foil is considered as anodic electrocatalyst. Electrolyzer stack is based on the alkaline design from Zhao et al.² Balance of plant uses the inventory from Bareiß et al.³ Capture of CO₂ is assumed to be performance with amine-based absorption using inventory from Giordano et al.⁴ Material and energy needs (water, heat, electricity, minor chemicals) are calculated in the black-box model described in work of the research group. ^{5–7}

Flow	Scenario		Ilait	
	SoA	HP	Unit	
Inputs				
Anode	4.24 · 10-4	2.23E-05	m ²	
Membrane	6.06 · 10-4	2.79E-05	m ²	
Cathode	4.24 · 10-2	2.23E-05	m ²	
Stack	2.12 · 10-4	1.12E-05	m ²	
Balance of Plant (BoP)	2.12 · 10-4	1.12E-05	m ²	
CO ₂ captured	1.63	1.38	kg	
Deionized water	3.80	1.80	kg	
Electricity	40.6	8.5	kWh	
Heat	160.6	20.73	MJ	
Outputs				
MeOH	1	1	kg	
H ₂	0.19	0.03	kg	
0 ₂	3.00	0.58	kg	
CO_2 to air	0.26	0.18	kg	

Table S1. Simplified inventory to produce MeOH by the CO₂ER route.

Supplementary Note 2 – Process Inventory for H2-e-MeOH

Inventory for the H_2 -e-MeOH process is reported in Table S2. Cathode, anode and stack is based on a previous work from Rumayor et al.,⁸ BoP and CO₂ capture uses the same as for the CO₂ER route. CO2 hydrogenation inventory uses data from Ravikumar et al., ⁹

Flow	Value	Unit	
Inputs			
Anode	2.23E-05	m ²	
Membrane	2.79E-05	m ²	
Cathode	2.23E-05	m ²	
Stack	1.12E-05	m ²	
Balance of Plant (BoP)	1.12E-05	m ²	
CO ₂ captured	1.38	kg	
Deionized water	2.1	kg	
Electricity	10.86	kWh	
Heat	4.6	MJ	
Outputs			
МеОН	1	kg	
CO_2 to air	0.18	kg	

Table S2. Simplified inventory to produce MeOH by the H2-CO₂ER route.

References

- Rumayor, M.; Dominguez-Ramos, A.; Irabien, A. Environmental and Economic Assessment of the Formic Acid Electrochemical Manufacture Using Carbon Dioxide: Influence of the Electrode Lifetime. *Sustain. Prod. Consum.* **2019**, *18*, 72–82. https://doi.org/10.1016/j.spc.2018.12.002.
- (2) Zhao, G.; Kraglund, M. R.; Frandsen, H. L.; Wulff, A. C.; Jensen, S. H.; Chen, M.; Graves, C. R. Life Cycle Assessment of H2O Electrolysis Technologies. *Int. J. Hydrog. Energy* 2020, 45 (43), 23765–23781. https://doi.org/10.1016/j.ijhydene.2020.05.282.
- Bareiß, K.; de la Rua, C.; Möckl, M.; Hamacher, T. Life Cycle Assessment of Hydrogen from Proton Exchange Membrane Water Electrolysis in Future Energy Systems. *Appl. Energy* 2019, 237 (November 2018), 862–872. https://doi.org/10.1016/j.apenergy.2019.01.001.
- (4) Giordano, L.; Roizard, D.; Favre, E. Life Cycle Assessment of Post-Combustion CO 2 Capture: A Comparison between Membrane Separation and Chemical Absorption Processes. *Int. J. Greenh. Gas Control* **2018**, *68*, 146–163. https://doi.org/10.1016/j.ijggc.2017.11.008.
- (5) Dominguez-Ramos, A.; Singh, B.; Zhang, X.; Hertwich, E. G. G.; Irabien, A. Global Warming Footprint of the Electrochemical Reduction of Carbon Dioxide to Formate. *J. Clean. Prod.* 2015, 104, 148–155. https://doi.org/10.1016/j.jclepro.2013.11.046.
- (6) Fernández-González, J.; Rumayor, M.; Domínguez-Ramos, A.; Irabien, Á. CO2 Electroreduction: Sustainability Analysis of the Renewable Synthetic Natural Gas. *Int. J. Greenh. Gas Control* 2022, *114*, 103549. https://doi.org/10.1016/j.ijggc.2021.103549.
- (7) Rumayor, M.; Dominguez-Ramos, A.; Irabien, A. Formic Acid Manufacture: Carbon Dioxide Utilization Alternatives. *Appl. Sci.* **2018**, *8* (6), 914. https://doi.org/10.3390/app8060914.
- (8) Rumayor, M.; Corredor, J.; Rivero, M. J.; Ortiz, I. Prospective Life Cycle Assessment of Hydrogen Production by Waste Photoreforming. J. Clean. Prod. 2022, 336, 130430. https://doi.org/10.1016/j.jclepro.2022.130430.
- (9) Ravikumar, D.; Keoleian, G.; Miller, S. The Environmental Opportunity Cost of Using Renewable Energy for Carbon Capture and Utilization for Methanol Production. *Appl. Energy* **2020**, *279*, 115770. https://doi.org/10.1016/j.apenergy.2020.115770.