SUPPLEMENTARY INFORMATION

Thermoelectrically polarized amorphous silica promotes sustainable carbon dioxide conversion into valuable chemical products

Marc Arnau,^{a,b} Isabel Teixidó,^a Jordi Sans,^{a,b,*} Pau Turon,^{c,*}

and Carlos Alemán^{a,b,e,*}

^a IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya - BarcelonaTech, C/ Eduard Maristany, 10-14, 08019, Barcelona, Spain.

^b Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya - BarcelonaTech, 08930 Barcelona, Spain.

° B. Braun Surgical, S.A.U. Carretera de Terrassa 121, 08191 Rubí (Barcelona), Spain

^d Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain.

> * jordi.sans.mila@upc.edu, pau.turon@bbraun.com and carlos.aleman@upc.edu

Sample	Α	В	С	D
c-150/aSiO ₂	15.5	31.1-	17.8	35.6
$c-500/aSiO_2$	31.8	63.7	1.5	3
$c-800/aSiO_2$	25.2	50.6	8.1	16.1
$c-1000/aSiO_2$	22.2	44.3	11.2	22.3
$p-150/aSiO_2$	11.6	23.2	21.7	43.5
$p-500/aSiO_2$	10.1	20.3	23.3	46.3
$p-800/aSiO_2$	22.5	45.1	10.8	21.6
$p-1000/aSiO_2$	26.5	53.0	6.8	13.7

Table S1. Distribution of the A-D peaks (%) derived from the deconvolution of the Si 2ppeak for c-T/aSiO2 and p-T/aSiO2 samples.

Table S2. Yield of products (in μ mol per gram of catalyst; μ mol/g_c) coming from the CO₂ fixation reaction. The yield of each product extracted from the catalyst and the supernatant were summed. The reaction was performed using 6 bar CO₂ and 40 mL of H₂O at 120 °C using c-T/aSiO₂ (control) and p-T/aSiO₂ as catalyst. Blank reactions were performed without catalyst or using untreated aSiO₂.

Reaction	Formic acid	Methanol	Acetic acid	Ethanol	Isopropanol	Acetone	Dioxane
Blank (without catalyst)	-	-	-	-	-	-	-
Blank (with aSiO ₂)	-	-	2.3 ± 0.2	-	-	0.4 ± 0.2	-
c-150/aSiO ₂ as catalyst	83.7 ± 23.9	-	120.7 ± 21.5	24.4 ± 13.3	100.3 ± 18.7	10.9 ± 2.5	49.8 ± 14.0
c-500/ $aSiO_2$ as catalyst	-	-	29.3 ± 17.4	44.1 ± 15.6	19.2 ± 8.3	4.7 ± 1.3	6.3 ± 0.2
c-800/ $aSiO_2$ as catalyst	-	-	29.3 ± 7.5	25.6 ± 8.9	-	-	-
c-1000/ $aSiO_2$ as catalyst	-	-	29.8 ± 2.8	-	-	-	18.9 ± 1.8
p-150/aSiO ₂ as catalyst	313.5 ± 16.9	-	349.1 ± 21.8	-	-	-	123.7 ± 11.7
$p-500/aSiO_2$ as catalyst	57.0 ± 15.9	-	28.7 ± 10.8	215.2 ± 20.8	258.0 ± 28.4	11.1 ± 2.6	14.9 ± 2.4
p-800/aSiO ₂ as catalyst	-	23.5 ± 1.2	19.8 ± 9.4	-	-	22.3 ± 10.3	29.7 ± 8.3
p-1000/aSiO ₂ as catalyst	-	-	40.2 ± 13.5	0.2 ± 0.1	-	-	-

Table S3. Yield of products (in μ mol per gram of catalyst; μ mol/g_c) coming from the CO₂ fixation reaction. The yield of each product extracted from the catalyst and the supernatant were summed. The reaction was performed using 6 bar CO₂ and 40 mL of H₂O at 120 °C using p-150/aSiO₂ control) and p-HAp as catalyst. Blank reactions were performed without catalyst or using untreated aSiO₂.

Reaction	Formic acid	Methanol	Acetic acid	Ethanol	Isopropanol	Acetone	Dioxane
Blank (without catalyst)	-	-	-	-	-	-	-
Blank (with aSiO ₂)	-	-	2.3 ± 0.2	-	-	0.4 ± 0.2	-
Blank (with HAp)	-	-	0.2 ± 0.05	0.5 ± 0.1	-	$0.2\pm0.05\text{-}$	-
p-150/aSiO ₂ as catalyst	313.5 ± 16.9	-	349.1 ± 21.8	-	-	-	123.7 ± 11.7
p-HAp as catalyst	101.9 ± 14.3	-	122.2 ± 12.8	51.8 ± 9.2	-	7.5 ± 3.6	-

Figure S1. Additional SEM micrographs of c-T/aSiO₂.

Figure S2. Size histograms of c-T/aSiO₂ and p-T/aSiO₂ nanoparticles derived from SEM measurements.

Figure S3. Additional SEM micrographs of p-T/aSiO₂.

Figure S4. XPS survey scans of (a) c-T/aSiO₂ and (b) p-T/aSiO₂ samples.

Figure S5. High resolution O 1s spectra of c-T/aSiO₂ and p-T/aSiO₂.