Supporting Information for

Design and Synthesis of Asymmetric Anhydrous Quaternary Ammonium Fluoride Electrolytes for Fluoride Ion Batteries

Tiancheng Tan¹, Richard Murdey¹, Shunsuke Sumitomo², and Atsushi Wakamiya^{1*}

¹Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan

²Office of Society-Academia Collaboration for Innovation, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan

Table of contents

Synthesis of MeDMBBF ₄	3
Synthesis of MeDMBF	4
Synthesis of NpDMBBF ₄	5
Synthesis of NpDMBF	6
Synthesis of NpADMBF ₄	6
Synthesis of NpADMF	7
Solubility and Water Content of Various Organic Solvents	8
Cyclic Voltammetry Measurements	10
Conductivity Measurements	11
DOSY, HOESY NMR Measurements	12
Thermogravimetric Analysis	14
Stability in Organic Solvents	15
Theoretical Calculations for Decomposition Mechanisms	19
Crystal Data for NpADMCl (CCDC: 2385359)	20
NMR Charts	22
Reference	

Synthesis of MeDMBBF₄

Scheme S1

2,2-Dimethylbutanoyl chloride (20.4 mL, 18.0 g, 0.149 mol) was slowly added to a room temperature solution of dimethylamine hydrochloride (14.5g, 0.177 mol) and triethylamine (48.6 mL, 35.3 g, 0.349 mol) in dichloromethane (300 mL) and stirred at room temperature for 16 hours. Following the reaction, the mixture was washed with water. The organic layer was dried over anhydrous magnesium sulfate, and filtered, followed by low vacuum evaporation to remove the solvent. The resulting N, N, 2, 2tetramethylbutanamide (1) (15.0 g, 0.106 mol) was added into the suspension of lithium aluminium hydride (5.0 g, 0.14 mol) in dibutyl ether at 0 °C. The mixture stirred at 80 °C for 6 hours. The solution was cooled to room temperature and treated with NaOH aqueous solution then filtered. The resulting solution was treated with concentrated hydrochloric acid until pH = 1. Most of the solvent was removed in vacuo, after which the mixture was moved to a water bath (≤ 22 °C), treated with concentrated sodium hydroxide solution until pH = 14, and extracted with diethyl ether. The organic layer was dried over anhydrous magnesium sulfate and filtered, followed by low vacuum evaporation to partially remove residual solvent. The resulting N, N, 2, 2-tetramethylbutan-1-amine (2) (10.6 g, 77.8 mmol in diethyl ether, 52 wt%) was slowly added to a suspension of Meerwein's salt (trimethyloxonium tetrafluoroborate, 13.3 g, 89.9 mmol) in 200 mL dry dichloromethane. The suspension was stirred at room temperature for 12 hours, and most of the solvent was removed by evaporation to obtain a white solid. The crude product was further purified by recrystallization from methanol/diethyl ether to obtain MeDMBBF₄ and then dried under vacuum at 80 °C for 14 hours to obtain anhydrous MeDMBBF₄ (17.1 g, 74.0 mmol) in 93% yield.

¹H NMR (400 MHz, DMSO-*d*₆): δ 3.25 (s, 2H), 3.14 (s, 9H), 1.40 (q, 2H, *J*=7.6 Hz), 1.09 (s, 6H), 0.85 (t, 3H, *J*=7.6 Hz); ¹³C NMR (101 MHz, DMSO-*d*₆): δ 74.25, 54.76, 35.56, 34.51, 26.14, 8.01; ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ –150.

Synthesis of MeDMBF

Scheme S2

Anhydrous MeDMBBF₄ (3.0 g, 13 mmol) was dissolved into 20 mL methanol (water content < 30 ppm). After the addition of KF (1.0 g, 17 mmol, dried at 250 °C for 8 hours) a precipitate of KBF₄ was formed instantly and filtered. The conversion rate of BF₄⁻ ion to fluoride was monitored by ¹⁹F NMR: If BF₄⁻ ions were detected, more KF was added to the solution until the BF₄⁻ ion impurity was no longer observed in the product. Methanol in the resulting solution was subsequently removed by vacuum evaporation. The excess KF was removed by precipitation from methanol/diethyl ether (water content < 30 ppm) to obtain a colorless solution which was further dried under vacuum at 90 °C for 19 hours. White solid product (1.7 g, 10 mmol) was retrieved with a purification yield of 76%.

¹H NMR (400 MHz, MeCN- d_3): δ 3.42 (s, 2H), 3.35 (s, 9H), 1.43 (q, 2H, J=7.6 Hz), 1.09 (s, 6H), 0.87 (t, 3H, J=7.6 Hz); ¹³C NMR (101 MHz, MeCN- d_3): δ 75.51, 55.67, 36.59, 35.72, 26.90, 8.35; ¹⁹F NMR (376 MHz, MeCN- d_3): δ -74, -147.

Synthesis of NpDMBBF₄

Scheme S3

2,2-Dimethylbutanoyl chloride (15.4 mL, 14.4 g, 0.107 mol) was slowly added to a solution of triethylamine (15.4 mL, 11.2 g, 0.107 mol) and neopentylamine (8.1 g, 0.093 mol) in chloroform (80 mL) and refluxed for 18 hours. The mixture was washed with water and the organic layer was dried over anhydrous magnesium sulfate, and filtered, followed by low vacuum evaporation to obtain 2,2dimethyl-N-neopentylbutanamide quantitatively. Lithium aluminium hydride (5.4 g, 0.14 mol) was suspended in to dibutyl ether at 0 °C and N, N, 2, 2-tetramethylbutanamide (3) (17.5 g, 94.6 mmol) was added. The mixture stirred at 80 °C for 6 hours. The solution was cooled to room temperature and treated with NaOH aqueous solution then filtered. The resulting solution was treated with concentrated hydrochloric acid until pH = 1. Most of the solvent was removed in vacuo, after which the mixture was moved to a water bath (≤ 22 °C), treated with concentrated sodium hydroxide solution until pH = 14, and extracted with diethyl ether. The organic layer was dried over anhydrous magnesium sulfate and filtered, followed by low vacuum evaporation to partially remove most of residual solvent to give 2,2dimethyl-N-neopentylbutan-1-amine (4) in 88% yield (14.2 g, 83.0 mmol in ether, 57 wt%). The resulting colorless solution was moved to an ice bath, formic acid (10.3 g, 0.223 mol) was added followed by formaldehyde (aq. 37 wt%, 10.2 g, 0.126 mol). The mixture was refluxed for 3 hours. The solution was cooled to room temperature and treated with concentrated hydrochloric acid until pH = 1. The solvent was partially removed in vacuo at 45 °C until a white solid appeared, after which the mixture was moved to a water bath (< 22 °C), treated with concentrated sodium hydroxide solution until pH = 14, and extracted with diethyl ether. The organic layer was dried over anhydrous magnesium sulfate and filtered, followed by low vacuum evaporation to partially remove residual solvent. The resulting N,2,2-trimethyl-N-neopentylbutan-1-amine (5) (10.7 g, 57.8 mmol in diethyl ether, 53 wt%) was slowly added to a suspension of Meerwein's salt (trimethyloxonium tetrafluoroborate, 9.3 g, 63 mmol) in 100 mL dry dichloromethane. The suspension was stirred at room temperature for 12 hours, and most of the solvent was removed by evaporation to obtain a white solid. The crude product was

further purified by recrystallization from methanol/diethyl ether to obtain NpDMBBF₄ and then dried under vacuum at 80 °C for 14 hours to obtain anhydrous NpDMBBF₄ (16.0 g, 55.7 mmol) in 96% yield.

¹H NMR (400 MHz, MeCN- d_3): δ 3.28 (s, 2H), 3.26 (s, 2H), 3.17 (s, 6H), 1.47 (q, 2H, *J*=7.6 Hz), 1.19 (m, 15H), 0.90 (t, 3H, *J*=7.6 Hz); ¹³C NMR (101 MHz, MeCN- d_3): δ 77.53, 76.13, 52.55, 35.03, 34.14, 32.30, 27.94, 24.71, 5.85; ¹⁹F NMR (376 MHz, MeCN- d_3): δ –153.

Synthesis of NpDMBF

Scheme S4

Anhydrous NpDMBBF₄ (3.0 g, 10 mmol) was dissolved into 20 mL methanol (water content < 30 ppm). After the addition of KF (0.80 g, 14 mmol, dried at 250 °C for 8 hours) a precipitate of KBF₄ was formed instantly and filtered. The conversion rate of BF₄⁻ ion to fluoride was monitored by ¹⁹F NMR: If BF₄⁻ ions were detected, more KF was added to the solution until the BF₄⁻ ion impurity was no longer observed in the product. Methanol in the resulting solution was subsequently removed by vacuum evaporation. The excess KF was removed by precipitation from methanol/diethyl ether (water content < 30 ppm) to obtain a colorless solution which was further dried under vacuum at 90 °C for 19 hours. White solid (0.95 g, 4.3 mmol) product was retrieved with a purification yield of 43%.

¹H NMR (400 MHz, MeCN- d_3): δ 3.36 (s, 2H), 3.34 (s, 2H), 3.23 (s, 6H), 1.48 (q, 2H, J=7.6 Hz), 1.18 (s, 9H), 1.16 (s, 6H), 0.90 (t, 3H, J=7.6 Hz); ¹³C NMR (101 MHz, MeCN- d_3): δ 78.75, 77.33, 54.38, 37.22, 36.50, 34.52, 30.47, 27.26, 8.57; ¹⁹F NMR (376 MHz, MeCN- d_3): δ -73, -147.

Synthesis of NpADMBF₄

Scheme S5

1-(Adamantan-1-yl)methanamine (5.0 g, 30 mmol) was added to a room temperature solution of pivalaldehyde (3.3 mL, 2.6 g, 30 mmol) in dichloromethane (50 mL) and stirred for 0.5 hour. The solution was then moved to a water bath (< 22 °C), sodium triacetoxyborohydride (9.1 g, 43 mmol) was added and the mixture was stirred for 16 hours. Following the reaction, the mixture was quenched with NaHCO₃ aqueous solution, and extracted with diethyl ether. The organic layer was treated with concentrated hydrochloric acid to obtain corresponding hydrochloride salt (6) quantitatively. Compound 6 and K₂CO₃ (12 g, 87 mmol) was added in 50 mL MeOH, then MeI (5.00 mL, 11.4 g, 80.9 mmol) was added into this mixture then heated at 40 °C for 26 hours. The mixture was filtered and the solvent was removed by low vacuum evaporation to obtain colorless liquid of *N*-(adamantan-1-ylmethyl)-*N*,2,2-trimethylpropan-1-amine (7) (5.1 g, 21 mmol) in 70% yield. This resulting amine was slowly added to a suspension of Meerwein's salt (trimethyloxonium tetrafluoroborate, 4.0 g, 21 mmol) in 20 mL dry dichloromethane. The suspension was stirred at room temperature for 16 hours, and most of the solvent was removed by evaporation to obtain a white solid. The crude product was further purified by recrystallization from methanol/diethyl ether to obtain NpADMBF₄ (6.4 g, 15 mmol) in 71% yield.

¹H NMR (400 MHz, MeCN-*d*₃): δ 3.26 (s, 2H), 3.16 (s, 6H), 3.09 (s, 2H), 2.02 (m, 3H), 1.81 (m, 6H), 1.72 (m, 6H), 1.18 (s, 9H); ¹³C NMR (101 MHz, MeCN-*d*₃): δ 80.34, 79.16, 55.01, 42.37, 37.17, 36.90, 34.64, 30.34, 29.34; ¹⁹F NMR (376 MHz, MeCN-*d*₃): δ –153.

Synthesis of NpADMF

Scheme S6

Anhydrous NpADMBF₄ (2.0 g, 5.7 mmol) was dissolved into 20 mL methanol (water content < 30 ppm). After the addition of KF (0.40 g, 6.9 mmol, dried at 250 °C for 8 hours) a precipitate of KBF₄ was formed instantly and filtered. The conversion rate of BF₄⁻ ion to fluoride was monitored by ¹⁹F NMR: If BF₄⁻ ions were detected, more KF was added to the solution until the BF₄⁻ ion impurity was no longer observed in the product. Methanol in the resulting solution was subsequently removed by vacuum evaporation. The excess KF was removed by precipitation from methanol/diethyl ether (water content < 30 ppm) to obtain a colorless solution which was further dried under vacuum at 90 °C after 19 hours. White solid product (0.7 g, 2.5 mmol) was retrieved with a purification yield of 44%.

¹H NMR (400 MHz, MeCN-*d*₃): δ 3.49 (s, 2H), 3.33 (m, 8H), 1.96 (m, 3H), 1.78 (m, 6H), 1.68 (m, 6H), 1.15 (s, 9H); ¹³C NMR (101 MHz, MeCN-*d*₃): δ 79.56, 78.33, 54.66, 42.53, 37.01, 34.49, 30.54, 29.39; ¹⁹F NMR (376 MHz, MeCN-*d*₃): δ –73, –147.

Solubility and Water Content of Various Organic Solvents

Table S1 shows the solubility of MeDMBF, Np₂F, NpDMBF and NPADMF fluoride salts in methanol (MeOH), 1,3-dimethylimidazolidin-2-one (DMI), diethyl carbonate (DEC), dimethylsulfoxide (DMSO), 1-methylpyrrolidin-2-one (NMP), N,N-dimethylacetamide (DMA), N,N-dimethylformamide (DMF), γ -butyrolactone (GBL), ethyl acetate (EtOAc), acetonitrile (MeCN), propionitrile (PN), tetrahydrofuran (THF), diethyl ether (Et₂O), 1,2-dimethoxyethane (DME), tetraethylene glycol dimethyl ether (TEGDME), dicholomethane (DCM), bis(2,2,2-trifluoroethyl) ether (BTFE).

Table S1. Solubility these Anhydrous Fluoride electrolytes in Dry Organic Solvents

Solvent	Solubility (M)			
	MeDMBF	Np ₂ F	NpDMBF	NPADM F
MeOH	>11	> 16	> 16	> 2.0
DMI	< 0.1	< 0.1	< 0.3	< 0.1
DEC	< 0.1	< 0.1	< 0.1	< 0.1
DMSO	< 1.0	< 1.1 ^a	> 2.0	< 0.1
NMP	< 0.1	< 0.1	< 0.3	< 0.1
DMA	< 0.1	< 0.1	< 0.1	< 0.1
DMF	< 0.1	$< 0.2 \ ^{a}$	< 0.3	< 0.1
GBL	> 1.0	> 1.0	> 1.0	< 0.1
EtOAc	< 0.1	< 0.1	< 0.1	< 0.1
MeCN	> 1.0	$> 1.0^{a}$	> 1.0	< 0.2
PN	< 0.2	> 1.0	> 1.0	< 0.1
THF	< 0.1	< 0.1	< 0.1	< 0.1
Et ₂ O	< 0.1	< 0.1	< 0.1	< 0.1
DME	< 0.1	< 0.1	< 0.1	< 0.1
TEGDME	< 0.1	< 0.1	< 0.1	< 0.1
DCM	> 1.0	> 1.0	> 1.0	< 0.5
BTFE	> 2.0	$> 2.0^{a}$	> 2.0	< 0.1

^{*a*}Results from Reference 1.¹

Solvent	Water Content (ppm)
МеОН	29
DMI	53
DEC	13
DMSO	2
NMP	29
DMA	24
DMF	9
GBL	18
EtOAc	47
MeCN	2
PN	20
THF	7
Et ₂ O	18
DME	24
TEGDME	41
DCM	14
BTFE	3

Table S2. Measured Water Content of Various Organic Solvents Used in the Work

Deuterated solvents were purchased from Eurisotop or Cambridge Isotope Laboratories, Inc. Solvents were purchased from FUJIFILM Wako chemicals. All solvents with super dehydrated grade (< 10 ppm) were used as received, others were dried over 3 Å molecular sieves. Water content was measured by Karl Fischer Moisture Titrator (MKH-710M KYOTO ELECTRONICS MANUFACTURING CO., LTD.).

Cyclic Voltammetry Measurements

Cyclic voltammetry (CV) was performed on an HZ-Pro, Hokuto Denko Corp.analyzer in the glove box ($H_2O < 0.1$ ppm, $O_2 < 0.1$ ppm). A three-electrode cell using Pt as the working electrode and the counter electrode, A silver wire immersed in 1-methyl-1-propylpyrrolidinium bis(fluorosulfonyl)imide (MPPy-FSI) containing 0.1 M silver trifluoromethanesulfonate then placed in a compartment that was filled with MPPy-FSI and immersed in 0.9M electrolyte as the reference electrode (vs. ref.). The potential of Fc/Fc⁺ in a 0.2 M LiTFSI/DMSO solution was determined to be -0.42 V vs. ref. This value was subsequently converted to Li⁺/Li based on the literature report.²

Figure S1. Electrochemical window of the 0.1 M electrolytes in GBL and BTFE with 1 mV/s scan rate. (a) MeDMBF, (b) Np₂F, and (c) NpDMBF.

Conductivity Measurements

Figure S2. Relationship between the concentration and ionic conductivity at room temperature.

DOSY, HOESY NMR Measurements

DOSY was recorded with a Bruker Advance III, 600 MHz spectrometer equipped with a BBFO probe for samples in BTFE solution. The diffusion time was 0.05 s for both ¹H and ¹⁹F DOSY measurement. The samples in CD₃OD was recorded with a Bruker Advance III, 400 MHz spectrometer with BBFO probe. The diffusion time was 0.03 s for both ¹H and ¹⁹F DOSY measurement.

Diffusion coefficient (m² s⁻¹) was obtained using the following equation.

$$I = I_0 exp[in] \left[-D\gamma^2 g^2 \delta^2 \left(\Delta - \frac{\delta}{3} \right) \right]$$

I is the observed intensity, I_0 is the reference intensity (unattenuated signal intensity), γ is the gyromagnetic ratio of the observed nucleus, g is the gradient strength, δ is the length of the gradient, Δ is the diffusion time.

¹⁹F, ¹H HOESY was recorded with a Bruker Advance III, 600 MHz spectrometer equipped with a BBFO probe with 0.5 s mixing time for the samples in BTFE. The samples in CD₃OD was recorded with a Bruker Advance III, 400 MHz spectrometer with BBFO probe with 0.7 s mixing time.

Figure S3. Plots of $Ln(I/I_0)$ against the square of the gradient amplitude (G²) for DOSY measurements in 0.9M solutions.

Figure S4. (a) ¹⁹F, ¹H HOESY spectra of 0.9 M MeDMBF, Np₂F and NpDMBF in CD₃OD.

Thermogravimetric Analysis

Figure S5. Thermogravimetric analysis of anhydrous MeDMBF, Np₂F, NpDMBF and NPADMF, measured at a heating rate of 1 $^{\circ}$ C min⁻¹.

Stability in Organic Solvents

Figure S6. Long term stability of 0.9M MeDMBF/ BTFE solution at room temperature.

Decomposition mechanism

Figure S7. Long term stability of 0.9M NpDMBF/ BTFE solution at room temperature. $$^{19}{\rm F}$ NMR (376 MHz, BTFE)

Figure S8. ¹⁹F NMR for 0.9M MeDMBF, Np₂F, NpDMBF/ BTFE solution after keeping at room temperature for 12 months.

¹⁹F NMR (376 MHz, DCM)

¹H NMR (400 MHz, BTFE)

Figure S9. ¹⁹F NMR for MeDMBF, Np₂F, NpDMBF and NPADMF in DCM.

Figure S10. ¹H NMR for MeDMBF and NpDMBF in BTFE.

MeDMBF

Figure S11. ¹⁹F NMR for MeDMBF, Np₂F, NpDMBF in PN.

¹⁹F NMR (376 MHz, GBL)

Figure S12. ¹⁹F NMR for MeDMBF, Np₂F, NpDMBF in GBL.

Theoretical Calculations

Figure S13. Energy diagram of MeDMBF, Np₂F, NpDMBF, and NPADMF at M062X/Def2-TZVPP level.

Table S3. Binding Energy of MeDMBF, Np₂F, and NpDMBF

	MeDMBF	Np ₂ F	NpDMBF
Energy ^a	510	515	513
(kJ/mol)	-319	-313	-515

^aCalculated at M062X/Def2-TZVPP level.

Figure S14. Crystal structure of NpADMCl.

A clear light colourless plate-shaped crystal with dimensions 0.40×0.28×0.13 mm³ was mounted on a suitable support. Data were collected using an XtaLAB Synergy R, HyPix diffractometer operating at T = 100.00(10) K. Data were measured using w scans of 0.5° per frame for 5.0 s using Mo K_a radiation. The diffraction pattern was indexed and the total number of runs and images was based on the strategy calculation from the program CrysAlisPro (Rigaku). The maximum resolution that was achieved was Q = 26.372 (0.80 Å). The diffraction pattern was indexed and the total number of runs and images was based on the strategy calculation from the program CrysAlisPro (Rigaku) and the unit cell was refined using CrysAlisPro (Rigaku, V1.171.43.64a, 2023). Data reduction, scaling and absorption corrections were performed using CrysAlisPro (Rigaku, V1.171.43.64a, 2023). The final completeness is 99.00 % out to 26.372 in Q. A multi-scan absorption correction was performed using CrysAlisPro 1.171.43.64a (Rigaku Oxford Diffraction, 2023) using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. The absorption coefficient m of this material is 0.207 mm⁻¹ at this wavelength (l =0.711Å) and the minimum and maximum transmissions are 0.664 and 1.000. The structure was solved and the space group P-1 (# 2) determined by the ShelXT, structure solution program using Intrinsic Phasing and refined by Least Squares with SHELXL program using OLEX2 software.³⁻⁵All nonhydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. Hydrogen atom positions were calculated geometrically and refined using the riding model.

Compound	NpADMCl
Formula	C ₃₆ H ₆₈ Cl ₂ N ₂
D_{calc} / g cm ⁻³	1.112
m/mm^{-1}	0.207
Formula Weight	599.82
Colour	clear light
	colourless
Shape	plate
Size/mm ³	0.40×0.28×0.13
<i>T</i> /K	100.00(10)
Crystal System	triclinic
Space Group	<i>P</i> -1
a/Å	6.6435(2)
b/Å	12.1821(5)
c/Å	22.1673(7)
$a/^{\circ}$	92.234(3)
$b/^{\circ}$	91.070(2)
$g/^{\circ}$	92.200(2)
$V/Å^3$	1790.99(11)
Ζ	2
Z'	1
Wavelength/Å	0.71073
Radiation type	Mo K _a
$Q_{min}/^{\circ}$	2.438
$Q_{max}/^{\circ}$	26.372
Measured Refl.	16411
Independent Refl.	7216
Reflections with I	>5101
2(I)	
R _{int}	0.0462
Parameters	371
Restraints	0
Largest Peak	0.498
Deepest Hole	-0.371
GooF	1.041
wR_2 (all data)	0.1359
wR_2	0.1249
R_1 (all data)	0.0809
R_I	0.0499

Figure S16. ¹⁹F NMR for MeDMBBF₄.

Figure S18. ¹H NMR for MeDMBF.

Figure S20. ¹³C NMR for MeDMBF.

Figure S22. ¹⁹F NMR for NpDMBBF₄.

Figure S23. ¹³C NMR for NpDMBBF₄.

¹H NMR (400 MHz, MeCN-*d*₃)

Figure S24. ¹H NMR for NpDMBF.

Figure S26. ¹³C NMR for NpDMBF.

Figure S28. ¹⁹F NMR for NpADMBF₄.

Figure S29. ¹³C NMR for NPADMBF₄.

Figure S30. ¹H NMR for NpADMF.

Figure S31. ¹⁹F NMR for NpADMF.

¹³C NMR (101 MHz, MeCN-*d*₃)

Figure S32. ¹³C NMR for NpADMF.

Figure S33. (a) ¹H DOSY spectra of MeDMBF/BTFE and (b) ¹⁹F DOSY spectra of MeDMBF/BTFE.

Figure S34. (a) $^1\mathrm{H}$ DOSY spectra of MeDMBF/CD_3OD and (b) $^{19}\mathrm{F}$ DOSY spectra of MeDMBF/CD_3OD.

Figure S35. (a) ¹H DOSY spectra of NpDMBF/BTFE and (b) ¹⁹F DOSY spectra of NpDMBF/BTFE.

Figure S36. (a) ¹H DOSY spectra of NpDMBF/CD₃OD and (b) ¹⁹F DOSY spectra of NpDMBF/CD₃OD.

Figure S37. (a) ¹H DOSY spectra of Np₂F/CD₃OD and (b) ¹⁹F DOSY spectra of Np₂F/CD₃OD.

Salvant		¹⁹ F NMR	kδ (ppm) of F	-
Solvent	MeDMBF	Np ₂ F	NpDMBF	NpADMF
DMSO	-73	-72	-74	b
GBL	-119	-116	a	b
MeCN	-73	-72	-74	-76
PN	-95	-103	-108	b
DCM	-98	-99	-99	-100
BTFE	-71	-71	-72	b

Table S4. ¹⁹F NMR Chemical Shifts for Fluoride Salts in Organic Solvents

^{*a*}Complete conversion to HF₂⁻. ^{*b*}Not measured due to the low solubility.

Reference

- 1 T. Tan, R. Murdey, S. Sumitomo, T. Nakamura, M. A. Truong and A. Wakamiya, *Chem. Mater.*, 2024, **36**, 4553–4560.
- 2 P. K. R. Kottam, D. Kalkan, M. Wohlfahrt-Mehrens and M. Marinaro, J. Electrochem. Soc., 2019, 166, A1574.
- 3 G. M. Sheldrick, Acta Crystallogr. Sect. Found. Adv., 2015, 71, 3-8.
- 4G. M. Sheldrick, Acta Crystallogr. Sect. C Struct. Chem., 2015, 71, 3-8.
- 50. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. a. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339–341.

33