Supplementary Information (SI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Information (ESI)

Light-intensity dependence of visible-light CO₂ reduction over Ru(II)-complex/Ag/polymeric carbon nitride hybrid photocatalysts

Ryuichi Nakada,¹ Chao Zhang,² Jo Onodera,¹ Toshiya Tanaka,¹ Megumi Okazaki,¹ Guigang Zhang,²* Kazuhiko Maeda,^{1,3}*

¹ Department of Chemistry, School of Science, Institute of Science Tokyo, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.

² State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.

³ Research Center for Autonomous Systems Materialogy (ASMat), Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.

*To whom corresponding author should be addressed.

G.Z.; guigang.zhang@fzu.edu.cn; K.M.: maeda@chem.sci.isct.ac.jp

Fig. S1. a) XRD patterns and b) UV-visible diffuse-reflectance spectra for as-prepared PCN, Ag/PCN, and Pt/PCN.

Fig. S2. TEM images of Ag/PCN and Pt/PCN.

Fig. S3. Ag 3d and Pt 4f XPS spectra of Ag/PCN and Pt/PCN.

Fig. S4. a) Apparent quantum yield and b) H_2 evolution rate for Pt/PCN as function of incident-light intensity. Reaction conditions: catalyst, 14 mg; reactant solution, DMA:TEOA mixture solvent (4:1 v/v, 14 mL); wavelength of light, 400 nm, Pt: 2.0 wt%.

Fig. S5. UV-vis spectra of Ru metal complex in MeOH before and after adsorption: a) **RuP** and b) **RuCP**.

Fig. S6. Spectral irradiance of the monochromatized visible light at 400 nm with different intensities.

Light intensity	HCOOH rate	HCOOH	НСООН	TONUCOOU	H ₂ rate /	CO rate /
$/ \text{ mW cm}^{-2}$	/ μ mol h ⁻¹	AQY / %	selectivity / %	ronneoon	μ mol h ⁻¹	μ mol h ⁻¹
1.1	0.71	2.43	91	51	0.14	n.d.
1.1	0.75	2.45	95.5	54	0.07	n.d.
2.1	1.34	2.44	95.3	96	0.13	n.d.
4.1	2.56	2.36	95.7	183	0.23	n.d.
5.0	3.11	2.35	95.7	222	0.28	n.d.
6.6	3.22	1.83	94.9	230	0.35	n.d.
8.5	3.43	1.52	91.2	245	0.66	n.d.
8.6	3.14	1.37	90.1	224	0.69	n.d.
10.0	3.18	1.20	94.0	227	0.20	n.d.
10.1	3.12	1.15	86.0	223	0.81	0.21
10.2	4.40	1.63	90.7	314	0.71	0.19

Table S1. Numerical data shown in Fig. 1 (RuP/Ag/PCN)

Table S2. Results of data analysis for relationship between rate of HCOOH production (v_{HCOOH}) under 400 nm monochromatized light and incident-light intensity (I)^{*a*}

RuP/Ag/PCN			RuCP/Ag/PCN				
Region / mW cm ⁻²	а	b	R^2	Region / mW cm ⁻²	а	b	R^2
1.1–5.0	0.66	0.97	0.999	2.0-10.1	0.76	0.72	0.998
1.1-6.6	0.68	0.89	0.958				
5.0-10.2	2.1	0.23	0.23				

^{*a*} Reaction conditions: the same as described in the captions of Figs. 1 and 2. The relationship between v_{HCOOH} and *I* is analyzed on the basis of the equation $v = aI^b$.

Light intensity	HCOOH rate /	HCOOH AQY	НСООН	TON _{HCOOH}	H ₂ rate / µmol
$/ \mathrm{mW} \mathrm{cm}^{-2}$	μ mol h $^{-1}$	/ %	selectivity / %		h^{-1}
2.0	1.21	2.34	89.3	86	0.15
5.0	2.47	1.87	94.4	176	0.15
8.5	3.44	1.53	90.1	244	0.38
10.1	4.01	1.49	92.6	286	0.32

Table S3. Numerical data shown in Fig. 2 (RuCP/Ag/PCN)

References

- 1. R. Kuriki, H. Matsunaga, T. Nakashima, K. Wada, A. Yamakata, O. Ishitani and K. Maeda, J. *Am. Chem. Soc.*, 2016, **138**, 5159-5170.
- 2. M. Shizuno, K. Kato, S. Nishioka, T. Kanazawa, D. Saito, S. Nozawa, A. Yamakata, O. Ishitani and K. Maeda, *ACS Appl. Energy Mater.*, 2022, **5**, 9479-9486.
- 3. K. Maeda, D. An, C. S. Kumara Ranasinghe, T. Uchiyama, R. Kuriki, T. Kanazawa, D. Lu, S. Nozawa, A. Yamakata, Y. Uchimoto and O. Ishitani, *J. Mater. Chem. A*, 2018, **6**, 9708-9715.
- 4. P. A. Anderson, G. B. Deacon, K. H. Haarmann, F. R. Keene, T. J. Meyer, D. A. Reitsma, B. W. Skelton, G. F. Strouse and N. C. Thomas, *Inorg. Chem.*, 1995, **34**, 6145-6157.