Supporting Information

Fluorine doped carbon aerogel prepared from spent cathode carbon of aluminum electrolysis towards electrocatalytic synthesis of H₂O₂

Zhaoxu Li^{1,2}, Yu Liu^{1,2}, Junlang Zhang^{1,2}, Chao Yang¹, Xintai Su³, Chenyuan Zhu²,

Yongjun Jiang⁴, Wenxin Zhao⁴, Bo Zeng⁴, Chenxi Zhao⁴, Xueli Huang^{1*}, Hongtao

Xie^{2*}, Yizhao Li^{1,2*}

¹State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, P.R. China.

²Huzhou Key Laboratory of Smart and Clean Energy, Yangtze Delta Region Institute (Huzhou),

University of Electronic Science and Technology of China, Huzhou 313001, P.R. China.

³School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, P.R. China.

⁴Xinjiang New Energy (group) Environmental Development Co., Ltd., Urumqi 831499, P.R. China.
*Corresponding author. Tel: +86-991-8583083; Fax: +86-991-8588883;

E-mail address: liyizhao0809@126.com (Y. Li); xieht@csj.uestc.edu.cn (H. Xie); xuelih@163.com (X. Huang).

Electrode preparation

For rotating ring disk electrode (RRDE). The catalyst inks were prepared as follows: 2 mg of prepared catalyst were dispersed in the mixture containing anhydrous ethanol (400 μ l) and 5 wt.% Nafion (20 μ l) solution by ultrasonic oscillation for at least 2 h to form a homogeneous suspension. Then, 5 μ l of homogeneous ink was dropped on the RRDE, (disc area:0.1964 cm²) and gently blow dried with a fan.

For carbon paper. The catalyst inks were prepared as follows: 2 mg of prepared catalyst was dispersed in the mixture containing anhydrous ethanol (400 μ l) and 5 wt.% Nafion (20 μ l) solution by ultrasonic oscillation for at least 2 h to form a homogeneous suspension. The catalyst loading mass is about 0.5 mg.

Electrochemical measurement

For RRDE. The catalyst-coated RRDE electrode is equipped as a working electrode, and then the electrochemical workstation performs cyclic voltammetry (CV) and linear sweep voltammetry (LSV), respectively. To evaluate the response to ORR of samples, the CV test was performed in Ar- and O₂-saturated electrolyte, respectively, at the scan rate of 10 mV/s, with ring voltage turned off. In addition, the LSV test was conducted in O₂-saturated electrolyte at the scan rate of 5 mV/s, with the ring voltage setting to 0.335 V (*vs.* Hg/HgO). The H₂O₂ selectivity (H₂O₂ %) and the electron transfer number (n) was calculated by Eq. 1 and 2.

$$H_2 O_2 \% = 200 \times \frac{I_R}{I_D + I_R / N}$$
(1)

$$n = 4 \times \frac{I_D/N}{I_D + I_R/N} \tag{2}$$

where I_R is the ring current, I_D is the disk current, and N is the collection efficiency.

For H-type cell. The H_2O_2 yield was tested in a H-cell with Nafion-N117 membrane as the separator, at each fixed potential for 1h. In this H-type cell, the cathodic chamber and anodic chamber were filled with 0.1 M KOH of 30 ml and 30 ml, respectively. Firstly, the prepared working electrode was equipped in the H-cell, and

the several cycles CV test was conducted to active the catalysts. Then, the voltage was fixed at certain value, and the run time was set to 1h, and 10 μ l of solution was taken out to test H₂O₂ concentration. As for the durability test, stability was tested on RRDE by uniformly dropping 5 microliters of ink onto the disk electrode for 10 hours. The H₂O₂ yeild was calculated by Eq. 3.

$$Yeild = C_{H_2O_2} \times \frac{V}{m_{cat} \times t}$$
(3)

Where V (L) is the volume of the cathode electrolyte that's involved in the reaction, m_{cat} (g) is the amount of catalyst involved in the reaction and t (h) is the reaction time.

Standard curve drawing. The yellow Ce⁴⁺ solution can be reduced to colorless Ce³⁺ by H₂O₂ in the electrolyte. The absorbance of Ce⁴⁺ before and after the reaction can be determined by the UV–visible absorption spectrum (UV–Vis), and the measurement wavelength is about 318 nm. Firstly, different concentrations of Ce⁴⁺ solutions (0.1, 0.2, 0.3, 0.4 and 0.5 mmol L⁻¹) were configured and the corresponding absorption spectra and standard curves (Y=3.9649X+0.0294, R²=0.9988) could be obtained by using UV–Vis to detect different concentrations of Ce⁴⁺ solutions, as shown in Fig. S6 (a). To quantify the generated H₂O₂ after electrolysis for 1 h, 10 µL of solution in catholde was added to 4 mL of 0.5 mmol L⁻¹ standard Ce(SO₄)₂ solution. The mixture solution was measured by UV–Vis after standing for 2 h, and the yield of H₂O₂ was finally determined based on the reduced Ce⁴⁺ concentration.

Fig. S1 SEM images of raw material SCC.

Fig. S2 TEM image of impurities in SCC-FCA-500*.

Fig. S3 XPS local spectra of SCC-FCA-500* and SCC-FCA-500.

Fig. S4 EDS element mapping images of SCC-FCA.

Fig. S5 XRD patterns of SCC-GO.

Fig. S6 (a) UV–Vis spectra of Ce⁴⁺ solution with various concentrations and (b) corresponding standard curve.

Fig. S7 Free energy of O₂ reduction pathway of CFDC and SFCC.

Elements	Concentration (<i>w</i> %)	
F	32.716	
Na	28.530	
Al	8.737	
Κ	8.162	
Ca	6.866	
Si	5.914	
Fe	5.108	

Table. S1 Types and proportions of elements contained in SCC in XRF.

Table. S2 A comparison between CFDC and SFCC for free energy and bader charge of OOH*.

Active Site Model	Free Energy (ΔG)	Bader Charge (e)
CFDC	-0.30 eV	0.16
SFCC	-2.2 eV	0.23