Optimization of bacterial biorefinery for sustainable biodiesel production and flue gas reduction: A holistic approach to climate change mitigation and circular economy

Rachael J Barla¹, Suresh Gupta¹, Smita Raghuvanshi^{1*}

¹Department of Chemical Engineering Birla Institute of Technology and Science (BITS), Pilani- 333031, Rajasthan, India.

*Corresponding Author: Permanent Address: Department of Chemical Engineering, BITS PILANI, Pilani – 333031, Rajasthan, India, Tel.: +91-1596-515638 (O). Email smita@pilani.bits-pilani.ac.in

Supplementary

Fig. S1. Nutrient concentration in the media due to dissolved CO₂ (a) CO₃²⁻ and HCO³⁻; NO
(b) NH₄⁺, NO₂⁻ and NO₃⁻; SO₂ (c) SO₄²⁻, SO₃²⁻ and S²⁻; (d) PO₄³⁻

CARBON FIXATION PATHWAYS IN PROKARYOTES

Fig. S2. The carbon fixation pathways followed by the bacteria for the CO₂ metabolism.

Fig. S3. The nitrogen fixation pathways followed by the bacteria for the NOx metabolism.

SULFUR METABOLISM

Fig. S4. The sulfur fixation pathways followed by the bacteria for the SOx metabolism

Table S1.	Cost breakdown	of the working	capital for the	techno-economic	assessment
Table 51.	Cost of cardown	of the working	capital for the		assessment.

Working capital expenditure	Commodity	Cost (US\$)	
	Nutrient broth	0.018	
	Potassium Nitrate	0.0018	
	Dipotassium hydrogen phosphate	0.0018	
MSM (cost per gram)	Ammonium Chloride	0.059	
	Sodium Thiosulphate	0.00057	
	Sodium Chloride	0.0000061	
Packing material	PU foam sheet	3.25	
Energy consumption @	Air compressor (8 units/day)	8.45	

0.096 US\$ /unit electricity	Pump (3 units/day)	3.17
	Reactor central unit (4.5 units/day)	4.77
	Flue gas analyzer (2 units/day)	2.11
Workforce (per day)	Labor charges	2.17