In-situ Decorated Hetero-Composites Derived from Zn(II) based Coordination Polymer Featuring

Asymmetric Supercapacitor Application

Arif Ali, Khusboo Kumari, Anupama Joy, Fatma Parween, Mst Shubnur Sultana, Ganesh Chandra Nayak*

Affiliation: Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, Jharkhand, India-826004

Corresponding Email: gcnayak@iitism.ac.in

Section S1	Material and Methods
Table S1	Crystal data and structure refinement for MZ
Table S2	Bond Lengths for MZ
Table S3	Bond Angles for MZ
Table S4	HR-TEM EDX analysis (atomic %) of MZ, GMZ23, and RGMZ11
Table S5	XPS fitting results with corresponding peak area and percentage of different chemical bonds of MZ, GMZ23, and RGMZ11
Table S6	Comparative GCD (Specific capacitance (F g ⁻¹), Energy density (Wh kg ⁻¹), Power Density (W kg ⁻¹), analysis of MZ and GMZ23 ASC devices
Table S7	Fitted data value of Nyquist impedance of MZ and GMZ23 ASC devices
Table S8	Comparison of Electrochemical properties with reported results
Figure S1	A simulated and as-synthesized pattern of MZ
Figure S2	FE-SEM images of GO, GMZ11, GMZ12, and GMZ13 at different magnification range
Figure S3	FESEM images of RGO, RGMZ12, RGMZ13, and RGMZ23 at different magnification range
Figure S4	d-spacing value with the targeted area (a,b) MZ, (c,d) GMZ23, and (e,f) RGMZ11.
Figure S5	UV-visible spectra: (a) Graphene oxide; (b) hydrothermally reduced graphene oxide (RGO sponge), (c) combined spectra of MZ and GO, RGO composites
Figure S6	FTIR spectra: (a) MZ, GO, GMZ11, GMZ12, GMZ13, and GMZ23, (b) RGO sponge, RGMZ11, RGMZ12, RGMZ13, and RGMZ23
Figure S7	Thermogravimetric (TGA) pattern of MZ, GMZ23, and RGMZ11
Figure S8	Deconvoluted XPS spectra of MZ for (a) N1s, and (b) O1s, for GMZ23, (c) N1s, (d) O1s, and for RGMZ11 (e) N1s, and (f) O1s

Figure S9	Electrolyte-based comparative study of MZ in 1M KCl, 1M KOH, 1M Na_2SO_4 at 100 mV s ⁻¹ within potential window range 0.2 to -0.6 V, redox behavior of MZ in aqueous 1M KCl at 2 mVs ⁻¹ within potential range of 0.2 to -0.6 V
Figure S10	CV profile of (a) GMZ11, GMZ12, GMZ13, and GMZ23, (b) CV profile of RGMZ11, RGMZ12, RGMZ13, and RGMZ23 at 100 mV s ⁻¹ , (c) Comparative CV profile of best electrode material of GMZ and RGMZ series with MZ at 100 mV s ⁻¹ within potential window of -0.6 to 0.2 V, (d) plotting of Current density (@ 2, 3, 5, 10, and 20 A g ⁻¹) vs specific capacitance (F g ⁻¹) of all prepared electrode materials
Figure S11	Images (a) bare carbon fiber of $3 \text{cm} \times 3 \text{cm}$, (b) coated with active materials, (c) soaked with electrolyte, (d) assembled ASC device
Figure S12	(a) CV and (b) GCD profile of SSC, and ASC device
Figure S13	(a) CV profile of ASC device of MZ, (b) GCD at different current density, (c) EIS spectra of MZ after CV, after GCD and after CS (insert fitted circuit), (d) percentage retention, columbic efficiency (insert CV profile before cyclic stability and after cyclic stability)
Figure S14	(a) CV profile of ASC device of GMZ23, (b) GCD at different current density, (c) EIS spectra of GMZ23 after CV, after GCD and after CS (insert fitted circuit), (d) percentage retention, columbic efficiency (insert CV profile before cyclic stability and after cyclic stability)
Figure S15	FESEM analysis of before and after ASC device at different magnification range, (a,b) before electrochemistry, (c,d) after electrochemistry of MZ; (e,f) before electrochemistry, (g-h) after electrochemistry of GMZ23
Figure S16	EDX analysis of ASC device (a) before and (b) after electrochemistry of GMZ23, (c) before and (d) after electrochemistry of RGMZ11
Figure S17	PXRD pattern after electrochemical performance of MZ, GMZ23, and RGMZ11 (AE: after electrochemistry).

S 1. Material and Methods

S 1.1. Materials

All chemicals were used of analytical grade for analysis as it received. Benzene-1,3-dicarboxylic acid (Isophthalic acid, IPA) and 2-methyl imidazole were procured from TCI India and Sigma Aldrich, respectively. Zinc(II) nitrate hexahydrate ($Zn(NO_3)_2 \cdot 6H_2O$, 99%) was acquired from SRL (Sisco Research Laboratory, India). Graphite flake, median 7-10 microns (99%) was acquired from Alfa Aesar. Dry dimethylsulphoxide (DMSO, 99.5%), Potassium chloride (KCl, 98%) were purchased from SRL, India. Sulfuric acid (H_2SO_4 , 37%) was purchased from FINAR, India. Sodium nitrate (Na_2NO_3 , 99%) acquired from Merck and hydrogen peroxide (30%) from Avra India, potassium permanganate (KMnO₄) from SRL. N-methyl-2-pyrrolidone (NMP) and tetraethylammonium tetrafluoroborate (TEABF₄) were

acquired from TCI and Alfa Aesar, respectively. Polyvinylidene fluoride (PVDF, 99.9%) and Carbon Black (CB, 100%) were purchased from Nano Chemazone, Canada, and Alfa Aesar, India, respectively. All chemicals and solvents were utilized without further purification.

S 1.2. Instrumentations

Synthesized materials were characterized by different characterization techniques. Fourier transmittance infra-red (FTIR, PerkinElmer-Spectrum Two), and Raman spectroscopy (LabRAM HR-UV-Open, HORIBA Scientific, France) spectra of MZ and their composites were done. Powder X-ray diffraction (XRD, Rigaku, Smartlab with Cu Kα, Wavelength 1.5406 Å) was utilized to check the bulk phase purity of synthesized materials. Morphological analysis was done utilizing Field Emission Scanning Electron Microscopy (FE-SEM, 55, Carl Zeiss, Germany), and High-Resolution Transmission Electron Microscope (HR-TEM, Thermo Scientific, Talos F200X G2). Energy-dispersive X-ray spectroscopy (EDX)-Mapping (Hitachi, S-3400N). The thermal analyzer "NETZSCH STA 449 F3 Jupiter" instrument was utilized to check the thermal stability of framework composition. X-ray photoemission Spectroscopy (XPS, PHI, 5000 versa probe III) was utilized to analyze the chemical analysis of surface chemistry. All three, two electrode studies were performed on an electrochemical workstation (Metrohm Autolab M204).

S 1.3. Single Crystal X-ray diffraction (SC-XRD)

SC-XRD data of MZ was collected on a 'Supernova, Rigaku Oxford Diffraction' at 100(2) K diffractometer using monochromatic Mo-K α radiation ($\lambda = 0.71073$ Å). The crystal structure of a single crystal was determined using Olex2,¹ solved using olex-2.solve,² and refined using olex2.refine.² Hydrogen atoms were refined isotropically, while non-H atoms were refined with an anisotropic displacement parameter. Tables S1-S3 summarize the crystal structure refinement data.

S 1.4. Electrochemical Analysis

All electrochemical analyses of all electrode materials for three-electrode and two-electrode studies were performed on an electrochemical workstation (Metrohm Autolab). The electrochemical analysis in a three-electrode system was executed in an aqueous (1 M KOH, and 1 M KCl) electrolyte. Active materials were coated on graphite rod as working electrode, and Ag/AgCl electrode and Pt foil were used as reference and counter electrodes, respectively. To fabricate the working electrode, a slurry of active materials (80 wt%), CB (10 wt%), and PVDF (10 wt%) were mixed with the addition of a few drops of NMP, and drop-casting on the surface of an acid-cleaned graphite rod. Cyclic voltammetry (CV) and the galvanostatic charging–discharging (GCD) study were carried out within a potential range of -0.6 to 0.2 V, to execute the activeness of synthesized materials as anode. The amount of active material was 0.4 mg. The frequency of 1 MHz to 1 Hz at 10 mV amplitude at room temperature was conducted to evaluate the electrochemical impedance spectroscopy (EIS) analysis. The Charging-discharging plot (GCD) was conducted to evaluate the Specific Capacitance (Sp. Cp. in F g^{-1} ; C) utilizing eq. [1]:³

$$C = (i \times \Delta t) / (m \times \Delta V)$$
(1)

The specific capacity Qs (C g⁻¹) was calculated by using the equation (2), since NF exhibits battery type behavior.⁴

$$Qs = (I \times \Delta t) / m \tag{2}$$

Where, i = charging-discharging current, Δt = discharge cycle (in second), m = total loaded mass of active material, and ΔV = voltage range.

The specific energy density (ED) (E in Wh kg⁻¹) and power density (PD) (P in W kg⁻¹) were evaluated using the following equations [3,4]:⁵

ED, E =
$$[C(\Delta V)^2]/7.2$$
 (3)

$$PD, P = [E \times 3600] / \Delta t \tag{4}$$

Table S1. Crystal data and st	Table S1. Crystal data and structure refinement for MZ.				
CCDC No.	2385212				
Empirical formula	$C_{16}H_{16}N_4O_4Zn$				
Formula weight	393.73				
Temperature/K	293(2)				
Crystal system	monoclinic				
Space group	P2 ₁ /c				
a/Å	10.1659(4)				
b/Å	10.2917(4)				
c/Å	16.6225(6)				
α/°	90				
β/°	103.761(4)				
· γ/°	90				
Volume/Å ³	1689.20(12)				
Ζ	4				
$\rho_{calc}g/cm^3$	1.5480				
μ/mm ⁻¹	1.483				
F(000)	809.6				
Crystal size/mm ³	$0.45 \times 0.23 \times 0.16$				
Radiation	Mo Ka ($\lambda = 0.71073$)				
2Θ range for data collection/°	4.12 to 58.92				
Index ranges	$-13 \le h \le 9, -8 \le k \le 14, -22 \le l \le 21$				
Reflections collected	8976				
Independent reflections	$3945 [R_{int} = 0.0218, R_{sigma} = 0.0305]$				
Data/restraints/parameters	3945/0/229				
Goodness-of-fit on F ²	1.041				
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0288, wR_2 = 0.0678$				
Final R indexes [all data]	$R_1 = 0.0361, wR_2 = 0.0712$				
Largest diff. peak/hole / e Å ⁻³	0.32/-0.54				

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Zn1	01	1.9391(13)	C4	C3	1.343(3)
Zn1	N1	1.9959(15)	C10	C9	1.505(3)
Zn1	N3	2.0048(15)	C10	C15	1.392(3)
Zn1	03	1.9676(13)	C10	C11	1.390(2)
01	C9	1.274(3)	C16	C12 ¹	1.504(3)
N1	C8	1.386(2)	C6	N2	1.344(2)
N1	C6	1.327(2)	C6	C5	1.481(3)
N3	C4	1.385(2)	N2	C7	1.365(3)

N3	C2	1.326(2)	C9		02	1.229(2)
03	C16	1.274(2)	C13	3	C12	1.391(3)
N4	C2	1.340(2)	C13	3	C14	1.381(3)
N4	C3	1.365(3)	C12	2	C11	1.392(2)
O4	C16	1.231(2)	C14	4	C15	1.384(3)
C8	C7	1.346(3)	C2		C1	1.487(3)

Table S3. Bond Angles for MZ.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
N1	Zn1	01	112.97(6)	C12 ¹	C16	03	115.52(16)
N3	Zn1	01	116.97(6)	C12 ¹	C16	04	120.26(18)
N3	Zn1	N1	110.40(6)	N2	C6	N1	109.43(17)
O3	Zn1	01	103.48(6)	C5	C6	N1	127.27(17)
03	Zn1	N1	115.25(6)	C5	C6	N2	123.30(17)
03	Zn1	N3	96.70(6)	C7	N2	C6	108.77(17)
C9	01	Zn1	128.81(13)	C10	C9	01	115.11(17)
C8	N1	Zn1	124.61(13)	02	C9	01	125.52(19)
C6	N1	Zn1	128.87(13)	02	C9	C10	119.3(2)
C6	N1	C8	106.51(16)	N2	C7	C8	106.24(18)
C4	N3	Zn1	121.93(12)	C14	C13	C12	120.02(19)
C2	N3	Zn1	131.69(13)	C13	C12	C16 ²	120.31(17)
C2	N3	C4	106.35(16)	C11	C12	C16 ²	120.11(16)
C16	03	Zn1	118.82(13)	C11	C12	C13	119.57(18)
C3	N4	C2	108.76(17)	C15	C14	C13	120.21(19)
C7	C8	N1	109.04(18)	C14	C15	C10	120.55(18)
C3	C4	N3	109.14(18)	C12	C11	C10	120.60(17)
C15	C10	C9	120.75(17)	N4	C2	N3	109.54(17)
C11	C10	C9	120.23(17)	C1	C2	N3	126.39(18)
C11	C10	C15	119.00(18)	C1	C2	N4	124.07(18)
04	C16	03	124.22(19)	C4	C3	N4	106.21(18)

Table S4. HR-TEM EDX analysis (atomic %) of MZ, GMZ23, and RGMZ11.

Atomic %	MZ	GMZ23	RGMZ11
С	87.4	82.38	87.92
N	5.85	1.24	1.33
0	5.78	6.57	10.46
Zn	0.95	0.16	0.28

Table S5. XPS fitting results with corresponding peak area and percentage of different chemical bonds of MZ, GMZ23, and RGMZ11.

Name	Elemental	Assigned Chemical Bond	Area and percentage (%)
	Atomic %		5221.01.0.25.200/
MZ		<u>C-C/C=C</u>	5321.01 & 37.29%
	C1s = 61.5	C-N	4524.83 & 31.71%
		С-О	1784.28 & 12.50%
		O-C=O	2636.62 & 18.48%
	N1s = 10.0	N-Zn	1164.48 & 29.97%
		N-C	2349.50 & 60.48%
		N-H	370.30 & 9.53%
	O1s = 16.5	C-O	4564.94 & 43.06%
		C=O	3158.24 & 29.79%
		Zn-O	2875.98 & 27.13%
	Zn2p = 12.0	Zn-N (2p _{3/2})	4799.89 & 29.29%
		Zn-O (2p _{3/2})	5576.03 & 34.03%
		Zn-N (2p _{1/2})	2873.25 & 17.53%
		Zn-O (2p _{1/2})	3135.18 & 19.13%
GMZ23	C1s = 67.1	C-C/C=C	3088.28 & 16.89%
		C-N	3529.88 & 19.30%
		C-O	4130.46 & 22.59%
		O-C=O	7533.16 & 41.20%
	N1s = 8.6	N-Zn	1016.28 & 30.56%
		N-C	929.42 & 27.95%
		N-H	1007.32 & 30.30%
		Graphitic N	371.17 & 11.17%
	O1s = 20.4	C-O	4215.19 & 31.92%
		C=O	2818.20 & 21.34%
		Zn-O	6171.81 & 46.73%
	Zn2p = 3.9	Zn-N $(2p_{3/2})$	1641.37 & 29.99%
		Zn-O (2p _{3/2})	1869.65 & 34.17%
		Zn-N (2p _{1/2})	1354.42 & 24.75%
		Zn-O (2p _{1/2})	606.07 & 11.07%
RGMZ11	C1s = 69.6	C-C/C=C	4918.72 & 24.42%
		C-N	2990.55 & 14.85%
		C-O	4549.90 & 22.59%
		O-C=O	7675.18 & 38.12%
	N1s = 6.6	N-Zn	1169.57 & 39.07%
		N-C	430.11 & 14.37%
		N-H	1059.14 & 35.38
		Graphitic N	334.10 & 11.16%
	O1s = 18.1	C-O	2746.91 & 22.62%
		C=O	4899.83 & 40.35%
		Zn-O	4495.33 & 37.02%
	Zn2p = 5.7	Zn-N (2p _{3/2})	3668.01 & 33.86%
		Zn-O (2p _{3/2})	3153.66 & 29.11%

Zn-N (2p _{1/2})	1342.73 & 12.39%
Zn-O (2p _{1/2})	2666.99 & 24.62%

Table S6: Comparative GCD (Specific capacitance (F g⁻¹), Energy density (Wh kg⁻¹), Power Density (W kg⁻¹), analysis of MZ and GMZ23 ASC devices.

S. No.	Current Density (A g ⁻¹)		ľ	MZ		GMZ23			
		Sp. Cp.	<mark>Sp. Cp.</mark>	E.D.	P.D.	Sp. Cp.	<mark>Sp. Cp.</mark>	E.D.	P.D.
		$(F g^{-1})$	$(C g^{-1})$	$(Wh kg^{-1})$	$(W kg^{-1})$	$(F g^{-1})$	(C g ⁻¹)	$(Wh kg^{-1})$	$(W kg^{-1})$
1	0.2	13.79	<mark>22.06</mark>	4.90	160	143.51	<mark>229.61</mark>	51.02	160
2	0.3	12.62	<mark>20.19</mark>	4.48	240	129.96	<mark>207.93</mark>	46.21	240
3	0.4	12.01	<mark>19.21</mark>	4.27	320	119.86	<mark>191.77</mark>	42.61	320
4	0.5	11.64	<mark>18.62</mark>	4.13	400	114.34	<mark>182.94</mark>	40.65	400
5	1.0	10.18	16.28	3.62	800	85.78	<u>137.248</u>	30.50	800
6	2.0	8.56	<mark>13.69</mark>	3.04	1600	57.25	<mark>91.61</mark>	20.35	1600

Table S7: Fitted data value of Nyquist impedance of MZ and GMZ23 ASC devices.

Elements	MZ			RGMZ23			
	After CV	After GCD	After CS	After CV	After GCD	After CS	
$R_s(\Omega)$	13.9	11.9	9.9	16.6	24	16.5	
$R_{CT}(\Omega)$	-	-	-	3.03	9.22	-	
CPE	2.2	1.6	1.7	108	188	173	
(mMho.S ^N)							
$C_{dl}(\mu F)$	39.8	42.9	38.8	6.29	6.57		
W (mMho.S $^{1/2}$)	253	303	300	181	238	90.7	
N	0.52	0.35	0.53	0.67	0.82	0.02	

Table S8. Comparison of Electrochemical properties with reported results.

MOF	Electrol	Potential	Sp.	Curre	E. D.	P.D.	Retenti	No. of	Ref.
based	yte	window	Cp.	nt	(Wh	(W	on of	cycles	
devices		(V)	(F g-	densit	kg -1)	kg -1)	Sp. Cp.		
			1)	y (A			(%)		
				g -1)					
MOFZP	3 M	1.8	130	1.0	58.4	450	-	10000	6

@rGO2	H ₂ SO ₄								
MOF5-	6 M	0.8	108.	3.0	-	-	86.5	2000	7
GO (3E)	КОН		45						
ZMG-1	3 M	0.75	58.3	1.0	4.55	104.1	99.87	2000	8
	КОН					7			
NCG _{0.5}	3 M	1.6	66.8	0.5	23.76	399.9	92.0	1000	9
	КОН					5			
rGO/Ppy	6 M	1.0	175	1.0	19.7	1792	81	7000	10
/Zn-	КОН								
MOF									
Ni-	6 M	0.4	111.	2.0	30.7	388.5	84	7000	11
MOF@	КОН		4						
GO									
Ni-	6 M	1.5	126.	2.0	39.43	34.29	73.6	1000	12
MOF/G	КОН		2						
ZIF-	1 M	0.6	326	3.0	25.5	2.7	88	1000	13
67/rGO	Na ₂ SO ₄								
	+ 0.2								
	М								
	K3[Fe(
	CN)6								
Zn–	2 M	1.55	192	1.0	13.3	789	86	10000	14
CP/rGO	КОН								
Zn-	3 M	0.8	82.5	0.5	7.1	400	87	5000	15
MOF-	КОН								
rGO20									
RGMZ1	1 M	1.6	154.	0.2	54.99	160	75	10000	Thi
1	TEABF		53						s
	4		$\left \frac{2}{2} \right $						wor
	/DMSO		(24 7 <u>7</u> 8						k

References

- 1 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339–341.
- L. J. Bourhis, O. V. Dolomanov, R. J. Gildea, J. A. K. Howard and H. Puschmann, *Acta Crystallogr. Sect. A Found. Adv.*, 2015, **71**, 59–75.

- Basree, A. Ali, G. C. Nayak, K. A. Siddiqui and M. Ahmad, ACS Omega, , DOI:10.1021/acsomega.4c08913.
- 4 M. Sethi, U. S. Shenoy and D. K. Bhat, *Nanoscale Adv.*, 2020, **2**, 4229–4241.
- 5 S. De, C. K. Maity, S. Sahoo and G. C. Nayak, *ACS Appl. Energy Mater.*, 2021, **4**, 3712–3723.
- 6 V. K. Ravi, P. Vickraman and T. A. Raja, *Phys. status solidi*, , DOI:10.1002/pssa.202300210.
- 7 M. Yadav, I. Saini, S. Sharma, P. Chand, N. Shekhawat and A. Joshi, *Ionics (Kiel).*, , DOI:10.1007/s11581-024-05849-y.
- 8 S. Tan, Z. Yao, Z. Liu, L. Li and H. Huang, *Ionics (Kiel).*, 2024, **30**, 1051–1060.
- 9 H. Zhang, L. Yang, X. Li, Y. Ping, J. Han, S. Chen and C. He, *Dalt. Trans.*, 2024, **53**, 4680–4688.
- 10 N. Saxena, M. P. Bondarde, K. D. Lokhande, M. A. Bhakare, P. S. Dhumal and S. Some, *Chem. Phys. Lett.*, 2024, **856**, 141605.
- 11 R. Sahoo, S. Ghosh, S. Chand, S. Chand Pal, T. Kuila and M. C. Das, *Compos. Part B Eng.*, 2022, **245**, 110174.
- 12 M. Azadfalah, A. Sedghi and H. Hosseini, *J. Mater. Sci. Mater. Electron.*, 2019, **30**, 12351–12363.
- 13 S. Sundriyal, V. Shrivastav, H. Kaur, S. Mishra and A. Deep, *ACS Omega*, 2018, **3**, 17348–17358.
- 14 T. K. Ghosh and G. Ranga Rao, *Dalt. Trans.*, 2023, **52**, 5943–5955.
- 15 Q. V. Thi, S. A. Patil, P. K. Katkar, I. Rabani, A. S. Patil, J. Ryu, G. Kolekar, N. T. Tung and D. Sohn, *Synth. Met.*, 2022, **290**, 117155.

Figure S1. Simulated and as-synthesized pattern of MZ.

Figure S2. FE-SEM images of GO, GMZ11, GMZ12, and GMZ13 at different magnification range.

Figure S3. FESEM images of RGO, RGMZ12, RGMZ13, and RGMZ23 at different magnification range.

Figure S4. d-spacing value with the targeted area (a,b) MZ, (c,d) GMZ23, and (e,f) RGMZ11.

Figure S5. UV-Visible spectra: (a) Graphene oxide; (b) hydrothermally reduced graphene oxide (RGO sponge), (c) combined spectra of MZ and GO, RGO composites.

Figure S6. FTIR spectra: (a) MZ, GO, GMZ11, GMZ12, GMZ13, and GMZ23, (b) RGO sponge, RGMZ11, RGMZ12, RGMZ13, and RGMZ23.

Figure S7. Thermogravimetric (TGA) pattern of MZ, GMZ23, and RGMZ11.

Figure S8. Deconvoluted XPS spectra of MZ for (a) N1s, and (b) O1s, for GMZ23, (c) N1s, (d) O1s, and for RGMZ11 (e) N1s, and (f) O1s.

Figure S9. Electrolyte-based comparative study of MZ in 1M KCl, 1M KOH, 1M Na_2SO_4 at 100 mV s⁻¹ within potential window range 0.2 to -0.6 V, redox behavior of MZ in aqueous 1M KCl at 2 mV s⁻¹ within potential range of 0.2 to -0.6 V.

Figure S10. CV profile of (a) GMZ11, GMZ12, GMZ13, and GMZ23, (b) CV profile of RGMZ11, RGMZ12, RGMZ13, and RGMZ23 at 100 mV s⁻¹, (c) Comparative CV profile of best electrode material of GMZ and RGMZ series with MZ at 100 mV s⁻¹ within a potential window of -0.6 to 0.2 V, (d) plotting of Current density (@ 2, 3, 5, 10, and 20 A g⁻¹) vs specific capacitance (F g⁻¹) of all prepared electrode materials.

Figure S11. Images (a) bare carbon fiber of $3 \text{cm} \times 3 \text{cm}$, (b) coated with active materials, (c) soaked with electrolyte, (d) assembled ASC device.

Figure S12. (a) CV and (b) GCD profile of SSC, and ASC device.

Figure S13. (a) CV profile of ASC device of MZ, (b) GCD at different current density, (c) EIS spectra of MZ after CV, after GCD and after CS (insert fitted circuit), (d) percentage retention, columbic efficiency (insert CV profile before cyclic stability and after cyclic stability).

Figure S14. (a) CV profile of ASC device of GMZ23, (b) GCD at different current density, (c) EIS spectra of GMZ23 after CV, after GCD and after CS (insert fitted circuit), (d) percentage retention, columbic efficiency (insert CV profile before cyclic stability and after cyclic stability).

Figure S15. FESEM analysis of before and after ASC device at different magnification range, (a,b) before electrochemistry, (c,d) after electrochemistry of MZ; (e,f) before electrochemistry, (g-h) after electrochemistry of GMZ23.

Figure S16. EDX analysis of ASC device (a) before and (b) after electrochemistry of GMZ23, (c) before and (d) after electrochemistry of RGMZ11.

Figure S17. PXRD pattern after electrochemical performance of MZ, GMZ23, and RGMZ11 (AE: after electrochemistry).