Fusion of Nitro Isomers of Naphthoquinone Enhances Capacity and Cyclability in Zn-ion Batteries

Supporting information

S.1. Materials and characterisation:

98% pure 2,3-dichloro-1,4-naphthoquinone (DCNQ) was obtained from TCI chemicals. Sulfuric acid and nitric acid were purchased from Thermo Fisher Scientific. Super P carbon and PVDF were from Alfa Aesar Pvt. Ltd. Nafion ionomer solution (5 wt. %) and Zn(OTf)₂ were purchased from Sigma-Aldrich. All chemicals were used as received. ¹H NMR of all active materials was recorded in 99% deuterated solvent or CDCl₃, purchased from Sigma-Aldrich, using a Bruker NMR spectrometer at 400 MHz. Melting points of the compounds were obtained by using the G LAB apparatus, and they were 145 °C (\pm 4), 175 °C (\pm 3), and 170 °C (\pm 3) for 5-nitro 2,3-dichloro 1,4-naphthoquinone (5-DCNNQ), 6-nitro 2,3-dichloro 1,4-naphthoquinone (6-DCNNQ) and their mixture DCNNQmix, respectively. 5-DCNNQ crystals were obtained from a saturated solution of 5-DCNNQ in methanol (at 50 °C) upon slowly cooling to room temperature, yielding colourless needle-like crystals. Single crystal X-ray diffraction was performed using Bruker D8 Venture diffractometer with PHOTON II detector operated with a molybdenum (λ (MoK α) = 0.71073 Å) X-ray radiation. For structure solving, more than 4292 reflections are considered. APEX3-SAINT program (Bruker AXS) and SADABS program were used for preliminary determination of the cell constants, data collection, data refinement, and an absorption correction, respectively^[1]. The data were acquired at 173 K, and the space group determination and structure solution was carried out using the SHELXT-2018/2 and SHELXL-2018/3 programs^[2]. ORTEP-3^[3] for windows was used to draw the structure.

S.2. Synthesis procedure of 5-nitro 2,3-dichloro 1,4-naphthoquinone (5-DCNNQ), 6-nitro 2,3-dichloro 1,4-naphthoquinone (6-DCNNQ):

The preparation 5/6-DCNNQ was done according to the literature report ^[4]. A mixture of fuming HNO₃ (4.5 gm) and H₂SO₄ (15 gm) was prepared in an ice bath. DCNQ (1.5 g, 0.66 mmol) was slowly added to the prepared solution and then heated at 80°C for 3 h. A dark brown solution was poured into the ice water (100 mL) to give a bright yellow precipitate. This yellow solid was filtered and washed with water and then collected by vacuum filtration. Column chromatography with ethyl acetate: hexane of 60:40 was used to separate the final product 5-DCNNQ (~ 69%, major) and 6-DCNNQ (~ 30%, minor).

5-DCNNQ: ¹H NMR (CDCl₃, 500 MHz): δ 8.41 (d, 1H,), 7.98 (t, ¹H), 7.79 (d, 1H) pp. 6-DCNNQ: ¹H NMR (CDCl₃, 500 MHz): δ 9.00 (d, 1H), 8.62 (dd, 1H), 8.42 (d, 1H).

Scheme S1. Synthesis scheme of 5-DCNNQ and 6-DCNNQ.

Fig. S1. ¹H-NMR of the reaction mixture (DCNNQmix).

Fig. S2. ¹H-NMR of 5-DCNNQ.

Fig. S3. ¹H-NMR of 6-DCNNQ.

Table S1. Crystal structure parameter	eters of 5-DCNNQ at low temperature.
---------------------------------------	--------------------------------------

CCDC number	2325245
Space group	P 2 ₁ / c
Crystal symmetry	Monoclinic
Cell parameters	a=9.1782 (18), b=14.990 (3), c=7.7606 (13)
	$\alpha = 90^{\circ}, \beta = 102.925^{\circ} (6), \gamma = 90^{\circ}$
	V = 1040.7 Å
	Z = 4
	Density = 1.736 g cm^{-3}
	R = 0.078

Fig. S4. Crystal structure of 5-DCNNQ (a) ORTEP diagram and (b) space fill form.

Fig. S5. Solubility tests of powder samples of 5-DCNNQ, DCNNQmix, and 6-DCNNQ in the electrolyte.

ig. S6. A comparative¹H-NMR of DCNNQmix before and after heating at 155 °C and 195 °C.

Fig. S7. Comparative charge-discharge plot (10^{th} cycle) of Zn//DCNNQmix-Cathode cell at 0.1 A g⁻¹ of current density when slurry made with hand mixing and melt-diffusion technique.

Fig. S8. Cyclic voltammetry (CV) of **(a)** DCNQ-Cathode recorded and its area under the **(b)** oxidation and **(c)** reduction peak at the scan rate of 0.1 mV s^{-1} . **(d)** Comparative CV curve of 5-DCNNQ-Cathode, 6-DCNNQ-Cathode, and DCNNQmix-Cathode in two-electrode mode at the scan rate of 0.1 mV s^{-1} .

Table S2	. Depicts	the area	under	the re	duction	and	oxidation	peaks	and	their	ratio	of	5- :	and	6-
DCNNQ-	Cathode	and DCN	NQmi	x-Catl	hode.										

Electrode	Area under reduction	Area under oxidation	Ratio (A _R /A _o)		
	peak (A _R) /mW	peak (A _o)/ mW			
DCNQ	2.316 × 10 ⁻²	1.944 × 10 ⁻²	1.19		
5-DCNNQ	4.715 × 10 ⁻²	1.269 × 10 ⁻²	3.7		
6-DCNNQ	3.885 × 10-2	1.553 × 10 ⁻²	2.5		
DCNNQmix	2.063 × 10 ⁻²	8.203 × 10 ⁻³	2.5		

Fig. S9. Galvanostatic charge-discharge plot of (a) 5-DCNNQ-Cathode and (b) 6-DCNNQ-Cathode at the rate of 0.1 A g^{-1} . (c) Photographic image of GF membrane at 1.6 V and 0.4 V recovered after disassembling the Zn//DCNNQmix cell.

Fig. S10. Efficiency plot of (a) 5-DCNNQ-Cathode and (b) 6-DCNNQ-Cathode at the current density of 0.1 A g⁻¹.

Fig. S11. Charge-discharge curve of DCNNQmix-PVDF cycled at the rate of 0.1 A g⁻¹.

Table S3. Rep	resentation of unit ch	narges experienced	l by >C=O and -	-NO ₂ groups i	n 5-DCNNQ
and 6-DCNNQ	calculated using Nat	tural Bond Orbital	analysis.		

Active	Charges at >C=O at neutral states		Charge differences when reduced by			
materials	at >C=O	at -NO ₂	at >C=O	at -NO ₂		
	ortho = 0.518		ortho = -0.119			
5-DCNNQ		0.517		0.008		
	far = 0.518		far = -0.125			
	meta = 0.519		meta = -0.094			
6-DCNNQ		0.513		-0.016		
	para = 0.517		para = -0.123			

Active cathode	Conductive		Diffusion	Capacity /	Current density	Ref.
materials	Carbon	Separator	coefficient	Capacity retention	/ Cycle number	
0 0 1,4-NQ	Super P	Nafion- 212		50 mAh g ⁻¹ / 87%	0.02 A g ⁻¹ /	20
LS OH LS	Super P	Nafion- 212	$10^{-13} - 10^{-14}$ cm ² s ⁻¹	50 mAh g ⁻¹ / 50%	0.1 A g ⁻¹ / 500	19
NQ@CNT	CNT	Glass Fiber		137.2 mAh g ⁻¹ / 41%	1 C / 1500	23
PQ@AC	Active Carbon	Glass Fiber	10 ⁻⁹ cm ² s ⁻¹	107.8 mAh g ⁻¹ / 96%	5 A g ⁻¹ / 36000	21
DCNNQmix	Super P	Glass Fiber	10 ⁻⁷ cm ² s ⁻¹	140 mAh g ⁻¹ / 91.3%	0.1 A g ⁻¹ / 9600	This work

Table S4. The table compares the quinone-based organic cathode materials for Zn-ion batteries.

Fig. S12. (a) PowderXRD of DCNNQmix powder and its slurry with PVDF and Nafion binder, and Nafion solution coated on a stainless steel sheet. (b) Efficiency vs. cycle number plot of Nafion-based Zn//DCNNQ-Cathode for >2200 cycles at 0.1 A g^{-1} .

Fig. S13. HRSEM crosssection images of DCNNQ electrode at (a) pristine, (b) discharged, and (c) charged states.

Fig. S14. HR-SEM coupled with EDX for elemental mapping of DCNNQmix electrodes at (a) pristine, (b) discharged, and (c) charged state of C, O, Cl, Zn, and F.

Fig. S15. ¹H-NMR of DCNNQmix extracted from the electrodes at (a) pristine, (b) discharged, and (c) charged state using CDCl₃.

Fig. S16. Mass spectrum of DCNNQmix extracted from the electrodes at (a) pristine, (b) discharged, and (c) charged state.

Fig. S17. ATR-IR recorded of DCNNQmix electrodes at various cell voltage during (a) discharge and (b) charge of the cell.

References

- [1] G. M. Sheldrick, *Sadabs* **1996**.
- [2] G. M. Sheldrick, Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8.
- [3] L. J. Farrugia, J. Appl. Crystallogr. 2012, 45, 849–854.
- [4] E. G. Stoddard, B. J. Killinger, R. N. Nair, N. C. Sadler, R. F. Volk, S. O. Purvine, A. K. Shukla, J. N. Smith, A. T. Wright, J. Am. Chem. Soc. 2017, 139, 16032–16035.