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1 Supporting experimental section

1.1. Chemicals and materials
Nickel foam (NF, 1 mm) and Pt/C (20 wt%) were purchased from Suzhou Sinero 

Technology Co., Ltd, Co(NO3)2·6H2O, (NH4)6Mo7O24·4H2O, CO(NH2)2 (urea), NH4F, 
ethanol, acetone, HCl, KOH, RuO2 were purchased from Macklin. All chemicals were 
used as received without further purification.

1.2. Pretreatment of nickel foam
To remove oxides and grease from the nickel foam, the NF was sonicated in 

acetone, hydrochloric acid, anhydrous ethanol, and deionized water for 15 minutes, then 
vacuum-dried and prepared for use.

1.3. Synthesis of Co3(PO4)2-MoO3-x/NF
Briefly, 3.0 m mol Co(NO3)2·6H2O, 2 m mol NH4)6Mo7O24·4H2O, CO(NH2)2 (1 

m mol) which provided an alkaline environment and NH4F (3 m mol) which controled 
the morphology were completely dissolved in 30 mL of deionized water to form a red 
clear solution. This was then transferred to a 50 mL Teflon-lined autoclave and the pre-

treated nickel foam was added. After being kept at 120℃ for 12h, Co3O4-MoO3-x/NF 

was obtained after natural cooling. The obtained Co3O4-MoO3-x/NF sample was then 
calcined under a 350℃ hydrogen-argon mixture (5%H2-Ar) atmosphere at a heating 
rate of 2℃/min for 2 h with sodium hypophosphite as phosphorus source. After this 
low-temperature phosphating reaction, Co3O4-MoO3-x/NF was successfully 
transformed into the crystalline/amorphous Co3(PO4)2-MoO3-x/NF heterostructure.

1.4. Synthesis of Co3(PO4)2 /NF, P-MoO3-x/NF and Ni2P/NF
The preparation was identical to that of Co3(PO4)2-MoO3-x/NF, except that in the 

first step (NH4)6Mo7O24-4H2O was not introduced as a source of Mo, Co(NO3)2-6H2O 
was not introduced as a source of Co, and neither was added.

1.5. Synthesis of electrodes of Pt/C and RuO2 on nickel foam
10 mg Pt/C (20 wt%) and 40 L Nafion (5 wt%) were dispersed in a mixture of 𝜇

200 L isopropyl alcohol and 800 L deionized water and treated with ultrasound for 𝜇 𝜇
30 min. Then, 200 L of catalyst inks was slowly loaded onto a clean surface of NF (1 𝜇
mm  1 mm) and dried in air. The catalyst loading of the Pt/C/NF catalyst is about 2.0 ×
mg/cm-2. At the same time, the RuO2 electrode was prepared using the same method.

1.6 Materials Characterizations
The morphology and structure of samples were characterized by scanning electron 

microscopy (SEM, SU8600, 5k eV) Low-magnification and high-resolution transition 
electron microscopy (TEM) images were obtained from a TEM (Talos F200S, 200k 
eV) equipped with an energy diffraction spectroscopy (EDS). X-ray diffraction (XRD) 
measurements were conducted on a D/max 2500pc diffractometer with a 
monochromatic Cu K  radiation ( =1.54178 Å). The Raman spectra were collected on 𝛼 𝜆
a (Renishaw) Raman spectrometer using a 450 nm laser， and X-ray photoelectron 



spectroscopy (XPS) was performed on a thermal ECSALAB 250 (15keV, 6 mA) with 
an Al anode. All the charge states were compensated by shifting binding energies based 
on the C 1s peak (284.8 eV)。

1.7 Electrochemical measurements
The traditional standard three-electrode system was used for electrochemical 

testing. Specifically, the graphite rod was used as the counter electrode, the Hg/HgO 
electrode as the reference electrode, and the Co3(PO4)2-MoO3-x/NF as the working 
electrode. In particular, to obtain more accurate and reasonable data, all samples were 
activated for 200 cycles at a scan rate of 20 mV/s before the polarisation curve of the 
samples was measured. HER and OER measurements were carried out in 1 M KOH 
solution and before testing, N2 and O2 were passed through until the solution was 
saturated, respectively. In addition, to characterize the catalytic performance of the 
samples, polarisation curves were recorded at a scan rate of 2 mV/s and the measured 
potentials were converted to the reversible hydrogen electrode ERHE according to the 

equation ERHE=EHg/HgO + 0.098 V + 0.0592 × pH, with the polarisation potentials of 

the resulting samples corrected by 80% (except for total hydrolysis). The EIS spectra 
of each electrode material were collected at an overpotential of 100 mV, with a 
frequency range of 10-1 – 10-5 Hz and an amplitude of 10 mV. Stability tests were 
carried out using the chronopotentiometry (i-t), multipotential step, and voltammetric 
cycling methods. Specifically, the stability tests were performed at polarisation voltages 
with current densities of 10 mA cm-2 and 100 mA cm-2, respectively, and the samples 
were cycled for 3600 revolutions at a scan rate of 50 mV/s. The polarization curves of 
the 1st and 3601st cycles were recorded for comparison.

1.8 Electrochemical active surface area (ECSA)
The electrochemical active area (ECSA) of all catalysts was estimated based on 

the capacitance of the double electric layer (Cdl). Specifically, cyclic voltammetry 
curves were obtained at different scanning speeds (10, 20, 30, 40, and 50 mV/s) in the 

illegal pull-down interval of open-circuit voltage ±50 mV. Then plotted the current 

density difference (∆j) between anodic and cathodic currents at fixed potential against 
the scan rate. The slope of the fit gives twice the Cdl, which was linearly related to 
ECSA. The formula was calculated as follows:

𝐸𝐶𝑆𝐴 =
𝐶𝑑𝑙 

𝐶𝑠

Where Cs refers to the specific capacitance of the sample measured under the same 
conditions, its value range was related to the nature of the electrolyte, in the acid 

electrolyte Cs value range was generally 0.015 ~ 0.110 , alkaline electrolyte 𝑚𝐹 𝑐𝑚 ‒ 2

Cs value range was generally: 0.022 ~ 0.130 0.022 0.130 [1].In general, for ~ 𝑚𝐹 𝑐𝑚 ‒ 2

the purpose of comparing the magnitude of ECSA for different catalysts, Cs was taken 



to be 0.035 mF in the acidic electrolyte and Cs in the basic electrolyte was taken to be 

0.040 [2].𝑚𝐹 𝑐𝑚 ‒ 2



2. Supporting figures

Figure S1. (A-C) SEM images of Crystalline/amorphous Co3(PO4)2-MoO3-x/NF at 
different magnifications; (D) EDS images of Crystalline/amorphous Co3(PO4)2-MoO3-

x/NF.

Figure S2. (A-C) SEM images of Co3O4-MoO3-x/NF at different magnifications; (D) 
EDS images of Co3O4-MoO3-x/NF.



Figure S3. (A-C) SEM images of amorphous P-MoO3-x/NF at different magnifications; 
(D) EDS images of amorphous P-MoO3-x/NF.

Figure S4. (A-C) SEM images of crystalline Co3(PO4)2/NF at different magnifications; 
(D) EDS images of crystalline Co3(PO4)2/NF.



Figure S5. (A-C) SEM images of Ni2P/NF at different magnifications.

Figure S6. (A-C) SEM images of crystalline bare NF at different magnifications.

Figure S7. HRTEM images of Co3(PO4)2-MoO3-x/NF.



Figure S8. HRTEM images of Co3(PO4)2-MoO3-x/NF.



Figure S9. Element mapping diagram for element Mo.

Figure S10. Raman spectra of MoO2/Ni3(PO4)2
[3]



Figure S11. Total spectrum of XPS measurements.



Figure S12. In the HER test, Cyclic voltammograms (CV) curves for (A) 
Crystalline/amorphous Co3(PO4)2-MoO3-x/NF, (B) Co3O4-MoO3-x/NF, (C) crystalline 
Co3(PO4)2/NF, (D) amorphous P-MoO3-x/NF, and(E) Ni2P/NF between -0.05 to 0.05 V 
vs RHE at five different scan rates (10, 20, 30, 40, and 50 mV/s).



Figure S13. Polarization curves were recorded from Co3(PO4)2-MoO3-x/NF 
heterostructure for HER at a scan rate of 2mV/s initial (red curve) and after (blue curve) 
the chronopotentiometry test. The current densities corresponding to A and B are 10 
and 100 mA cm-2 respectively.

Figure S14. Polarization curves were recorded from Co3(PO4)2-MoO3-x/NF 
heterostructure for HER at a scan rate of 2mV/s initial (red curve) and after (blue curve) 
the Multistep chronopotentiometry test.

Figure S15. The SEM image of the Co3(PO4)2-MoO3-x/NF heterojunction was obtained 
after the HER stability test.



Figure S16. The XRD image of the Co3(PO4)2-MoO3-x/NF heterojunction was obtained 
after the HER stability test.

Figure S17. High-resolution XPS spectra of Co 2p for Co3(PO4)2-MoO3-x/NF after the 
HER stability test.



Figure S18. High-resolution XPS spectra of Mo 3d for Co3(PO4)2-MoO3-x/NF after the 
HER stability test.



Figure S19. In the OER test, Cyclic voltammograms (CV) curves for (A) 
Crystalline/amorphous Co3(PO4)2-MoO3-x/NF, (B) Co3O4-MoO3-x/NF, (C) crystalline 
Co3(PO4)2/NF, (D) amorphous P-MoO3-x/NF, and(E) Ni2P/NF between 0.97 to 1.97 V 
vs RHE at five different scan rates (10, 20, 30, 40, and 50 mV/s).



Figure S20. Polarization curves were recorded from Co3(PO4)2-MoO3-x/NF 
heterostructure for OER at a scan rate of 2mV/s initial (red curve) and after (blue curve) 
the chronopotentiometry test. The current densities corresponding to A and B are 10 
and 100 mA cm-2 respectively.

Figure S21. Polarization curves recorded from Co3(PO4)2-MoO3-x/NF heterostructure 
for OER at a scan rate of 2mV/s initial (red curve) and after (blue curve) the Multistep 
chronopotentiometry test.



Figure S22. The SEM image of the Co3(PO4)2-MoO3-x/NF heterojunction was obtained 
after the OER stability test.

Figure S23. The XRD image of the Co3(PO4)2-MoO3-x/NF heterojunction was obtained 
after the OER stability test.



Figure S24. High-resolution XPS spectra of Co 2p for Co3(PO4)2-MoO3-x/NF after the 
OER stability test.



 Figure S25. High-resolution XPS spectra of Mo 3d for Co3(PO4)2-MoO3-x/NF after 
the OER stability test.

Figure S26. Polarization curves recorded from Co3(PO4)2-MoO3-x/NF heterostructure 
for Overall Water Splitting at a scan rate of 2 mV/s initial (red curve) and after (blue 
curve) the water splitting chronopotentiometry test.

Figure S27.The SEM image of the cathode electrode material in the dual-electrode 
system subsequent to the stability test.  

Figure S28.The SEM image of the anode electrode material in the dual-electrode 
system subsequent to the stability test.



3. Supporting tables

Table S1 Contents of oxygen-containing species from O ls XPS spectra.
Area %

Species
Co3(PO4)2-MoO3-x/NF Co3(PO4)2/NF P-MoO3-x/NF

M-O 17.28 14.63 8.24
Ov 18.67 32.67 38.31

M-OH 36.45 24.68 32.74
P-O 27.1 28.02 20.74

Table S2 Electrocatalytic hydrogen evolution reaction (HER) performance of recent 
reports based on amorphous-crystalline materials.

Catalysts
η10（mV

）

Tafel slope
(mV dec-1)

Electrolyte Ref.

Co3(PO4)2-MoO3-x/NF 34 44.4 1.0 M KOH this work
Mo(0.05)-NiCoP 67 86 1.0 M KOH [4]

Mo-Ni3S2/CoFeOH/NF 109 111 1.0 M KOH [5]

FCN-8P/NF 77 90.6 1.0 M KOH [6]

CoNiPOx@V3%-Co4N/NF 53 85.7 1.0 M KOH [7]

c-Ni2P4O12/a-NiMoOx/NF 78 84 1.0 M KOH [8]

CrOx–Ni3N 53 76.4 1.0 M KOH [9]

FeCo(NiS2)4-C/A 82 69.57 1.0 M KOH [10]

Cu-(a-NiSex/c-NiSe2)/TiO2 NRs 156.9 51.2 1.0 M KOH [11]

Ni3(BO3)2–Ni3S2/NF 92 152.3 1.0 M KOH [12]

a/c-RuO2/Ni0.85Se 58 62 1.0 M KOH [13]

NiMoOx/NiMoS 38 38 1.0 M KOH [14]

-CoMoPx/CF𝛼 59 55 1.0 M KOH [15]

Ni(OH)2–NiMoOx/NF 36 38 1.0 M KOH [16]

Zn-VOx-Co 72 75 1.0 M KOH [17]

Co4N–CeO2/NF 52 56.8 1.0 M KOH [18]
Fe–Ni@NC-CNTs/GC 202 113 1.0 M KOH [19]

CoP@PS/NCNT 80 53 1.0 M KOH [20]
Co/WN NWs 151 82 1.0 M KOH [21]

Table S3 Electrocatalytic oxygen evolution reaction (OER) performance of recent 
reports based on amorphous-crystalline materials.

Catalysts
Overpotential

@current density
Tafel slope 
(mV dec-1)

Electrolyte Ref.



Co3(PO4)2-MoO3-x/NF 263 mV@10 mA cm-2 33.9 1.0 M KOH
this 

work

Mo(0.05)-NiCoP 233 mV@10 mA cm-2 52 1.0 M KOH [4]

Mo-Ni3S2/CoFeOH/NF 246 mV@10 mA cm-2 33 1.0 M KOH [5]

FCN-8P/NF 233 mV@10 mA cm-2 44.5 1.0 M KOH [6]

CoNiPOx@V3%-Co4N/NF 270 mV@10 mA cm-2 54.66 1.0 M KOH [7]

c-Ni2P4O12/a-NiMoOx/NF 250 mV@20 mA cm-2 99 1.0 M KOH [8]

CrOx–Ni3N2 308 mV@50 mA cm-2 88.2 1.0 M KOH [9]

Fe10%–Ni1Co2HPi 206 mV@15 mA cm-2 56 1.0 M KOH [22]

FeCo(NiS2)4-C/A 230 mV@10 mA cm-2 39.62 1.0 M KOH [10]

Cu-(a-NiSex/c-NiSe2)/TiO2 
NRs

339 mV@10 mA cm-2 54.2 1.0 M KOH [11]

(WO2–Ni17W3)/NiFe(OH)x/NF 240 mV@50 mA cm-2 63.5 1.0 M KOH [23]

NFO-V0.3-P 277 mV@20 mA cm-2 45 1.0 M KOH [24]

Ni3(BO3)2–Ni3S2/NF 217 mV@10 mA cm-2 106.3 1.0 M KOH [12]

a/c-RuO2/Ni0.85Se 233 mV@10 mA cm-2 48 1.0 M KOH [13]

NiMoOx/NiMoS 186 mV@10 mA cm-2 34 1.0 M KOH [14]

a-CoMoPx/CF 305 mV@10 mA cm-2 50 1.0 M KOH [15]

Ni2P@FePOxHy 220 mV@10 mA cm-2 43 1.0 M KOH [25]

Co2P@Co/N–C/GC 320 mV@10 mA cm-2 48.8 1.0 M KOH [26]
Co–Fe–B 298 mV@10 mA cm-2 62.6 1.0 M KOH [27]

Table S4 Comparison of electrocatalytic overall alkaline water splitting performance 
of recent reports based on amorphous-crystalline materials.

Anode materials Cathode materials
Cell potential@10 

mA cm-2 Electrolyte Ref.

Co3(PO4)2-MoO3-

x/NF
Co3(PO4)2-MoO3-

x/NF
1.51 V 1.0 M KOH

this 
work

Mo(0.05)-NiCoP Mo(0.05)-NiCoP 1.56 V 1.0 M KOH [4]

Mo-Ni3S2/CoFeOH/NF Mo-Ni3S2/CoFeOH/NF 1.51 V 1.0 M KOH [5]

FCN-8P/NF FCN-8P/NF 1.56V 1.0 M KOH [6]
CoNiPOx@V3%-

Co4N/NF
CoNiPOx@V3%-

Co4N/NF
1.52 V 1.0 M KOH [7]

c-Ni2P4O12/a-
NiMoOx/NF

c-Ni2P4O12/a-
NiMoOx/NF

1.545 V 1.0 M KOH [8]

CrOx–Ni3N CrOx–Ni3N 1.53 V 1.0 M KOH [9]
FeCo(NiS2)4-C/A FeCo(NiS2)4-C/A 1.51 V 1.0 M KOH [10]

Cu-(a-NiSex/c-
NiSe2)/TiO2 NRs

Cu-(a-NiSex/c-
NiSe2)/TiO2 NRs

1.62 V 1.0 M KOH [11]



Ni3(BO3)2–Ni3S2/NF Ni3(BO3)2–Ni3S2/NF 1.49 V 1.0 M KOH [12]
a/c-RuO2/Ni0.85Se a/c-RuO2/Ni0.85Se 1.488 V 1.0 M KOH [13]
NiMoOx/NiMoS NiMoOx/NiMoS 1.46 V 1.0 M KOH [14]
a-CoMoPx/CF a-CoMoPx/CF 1.581 V 1.0 M KOH [15]

Ni2P@FePOxHy–
MoNi4/MoO2

Ni2P@FePOxHy–
MoNi4/MoO2

1.491 V 1.0 M KOH [25]

CoMnO@CN CoMnO@CN 1.7 V 1.0 M KOH [28]
EO Mo-/Co–N–C/Cu EO Mo-/Co–N–C/Cu 1.62 V 1.0 M KOH [29]

Fe–Ni2P/MoSx/NF Fe–Ni2P/MoSx/NF 1.61 V 1.0 M KOH [30]
FeNiB/FeNi FeNiB/FeNi 1.65 V 1.0 M KOH [31]

CoP/NCNHP/GC CoP/NCNHP/GC 1.64 V 1.0 M KOH [32]
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