Microbubble synthesis of hybridised bacterial cellulose-gelatin separators for multifunctional supercapacitors

Surachai Chaichana,^a Pawin lamprasertkun,^{b,c} Montree Sawangphruk,^d Noelia Rubio^e and Pichamon Sirisinudomkit^{*a,f,g}

- a) Department of Mining and Materials Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- b) School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani, 12120, Thailand
- c) Research Unit in Sustainable Electrochemical Intelligent, Thammasat University, Pathum Thani, 12120, Thailand
- d) Centre of Excellence for Energy Storage Technology, Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
- e) Department of Organic and Inorganic Chemistry, Faculty of Pharmacy, University of Alcala, Madrid, 28805, Spain
- Research Center in Materials Innovation for Carbon Neutrality (MATICN), Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- g) PSU EV development Center, Faculty Engineering, Prince of Songkla University, Hatyai, Songkhla, 90110, Thailand

*Corresponding author E-mail address: pichamon.si@psu.ac.th

1. Calculation

Specific surface area

The specific surface area estimated via the adsorption of methylene blue (S_{MB})

$$S_{MB} = \frac{N_g \times a_{MB} \times N \times 10^{-20}}{MW_{MB}}$$
(S1)

Where N is Avogadro's number (6.02 x 10^{23} mol⁻¹), a_{MB} is the surface area which one molecule of methylene blue is occupied, Ng is the number of methylene blue molecules which are adsorbed, and MW_{MB} is the molecular weight of methylene blue (319.85 g/mol).

The crystallinity

$$CI = \frac{A_c}{A_t} \times 100\%$$
(S2)

Where A_t is the total area of the diffraction including crystalline and amorphous diffraction and A_c is the area of the crystalline diffraction.

The tensile test

Stress (σ_t) is calculated at the maximum applied force (F_{max}) where the sample is broken normalised by the cross-sectional area of sample (A_{CSA}) through Equation S3. The strain (ϵ) is calculated from the change in length of the sample from the original length to the failure length (Δx) dependent on gauge length (L) which is used.

$$\sigma_t = \frac{F_{max}}{A_{CSA}} \tag{S3}$$

$$\epsilon = \frac{\Delta x}{L} \tag{S4}$$

Young modulus of elasticity (E) is obtained through the proportional of average stress by average strain of samples (S5).

$$E_t = \frac{\sigma}{\epsilon} \tag{S5}$$

The specific capacitance of the as-fabricated symmetric supercapacitors

Gravimetric capacitance (C_{CV}) of the symmetric devices, which is determined via the Cyclic voltammetry (CV) technique, is calculated by the equation below.

$$C_{cv} = \frac{4 \int i dv}{\Delta V_{cv} \times m \times v} \tag{S6}$$

Where v is the scan rate, ΔV_{cv} is a voltage window (V), $\int i dv$ is an integral under CV discharge curve, and m is the mass of electrode active materials.

Gravimetric capacitance (C_{GCD}) of the symmetric devices, which is investigated via the galvanostatic charge discharge (GCD) technique using S7 equation to calculate.

$$C_{GCD} = \frac{4i_{GCD}}{(\frac{dV}{dt})}$$
(S7)

where i_{GCD} is the applied current density (A/g), which is the applied current normalised by the mass of electrode active materials. $\frac{dV}{dt}$ is calculated from the slope obtained by fitting the discharge curve.

Gravimetric energy and power density of as-fabricated symmetric supercapacitors

Gravimetric energy density (E_{cell}) and gravimetric power density (P_{cell}) were calculated by S8 and S9 equations respectively.

$$E_{cell} = i \int V dt \tag{S8}$$

$$P_{cell} = \frac{E_{cell}}{t_{discharge}} \tag{S9}$$

Where $t_{discharge}$ is the discharging time, i is the applied current density (A/g) and $\int V dt$ is the area under discharge curve.

The Coulombic efficiency

Coulombic efficiency (η) is amount of discharging time divided by amount of charging time at the same applied current density:

$$\eta = \left(\frac{t_{discharge}}{t_{charge}}\right) \times 100\% \tag{S10}$$

Where t_{charge} is charging time and $t_{discharge}$ is the discharging time.

Fig. S1 FE-SEM images of 2BC2GT_R200

Table S1. The specific surface areas determined by methylene blue adsorption (S_{MB}) using equation S1and the amount of methylene blue molecules which are adsorbed to as-synthesised BC and hybridisedBC-gelain separators (N_g).

Sample	N _g 10 ⁻³ kg/kg	S _{мв} 10 ⁻³ km ² /kg		
2BC	0.00473	17.58		
2BC1.5GT	0.00483	17.95		
2BC_R200	0.00508	18.87		
2BC1.5GT R200	0.00539	20.03		

Table S2. Thickness of as-synthesised BC and hybridised BC-gelain separators.

Sample	Thickness (μm)		
2BC	15.3±0.9		
2BC1.5GT	22.6±2.7		
2BC_R200	16.4±2.8		
2BC1.5GT_R200	38.8±3.1		

 Table S3.
 Contact angle information.

		contact angle Θ [°]				
Sample	Drop	left	right	average (left and right)	SD	%RSD
2BC	1	83.8	78.7			
	2	75.7	76.0	79.7	3.4	4.3
	3	80.9	82.9			
2BC1.5GT	1	72.7	70.4			
	2	71.9	72.0	71.6	0.8	1.2
	3	70.9	71.3			
2BC_R200	1	52.8	51.6			
	2	53.2	54.8	53.1	1.0	2.0
	3	53.4	52.8			
2BC1.5GT_R200	1	27.7	26.9			
	2	27.6	27.6	27.5	0.3	1.1
	3	27.5	27.5			

Mechanical performance

Fig. S2 Stress–strain curves of (a) 2B1.5GT, (b) 2BC_R200, (c) 2BC0.5GT_R200, (d) 2BC1GT_R200, (e) 2BC1.5GT_R200 and (f) 2BC2GT_R200.

Fig. S3 (a) FTIR spectrum of 2BC1.5GT,2BC_R200 and 2BC1.5GT_R200 and (b) TGA (N_2) curves of assynthesised BC and hybridised BC-gelatin separators.

The electrochemical characteristic of hybridised BC-gelatin separators via EIS

Fig S4. (a) Nyquist plots and (b) R_s/volume of of as-prepared BC and hybrisided BC-gelatin separators at different concentration of BC.