Polyfluorene-based electrolyte membrane for hydrogen/oxygen gas separation under humidified conditions

Shoji Miyanishi*[†], Kaede Matsuta[†], Takeo Yamaguchi*[†]

[†]Laboratory for Chemistry and Life Science Institute of Innovative Research, Tokyo Institute of

Technology, R1-17, 4259, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan

Corresponding author: yamag@res.titech.ac.jp

Contents

- Figure S1. ¹H-NMR spectra of the monomer
- Figure S2. ¹H-NMR and ¹⁹F-NMR spectra of the polymers
- Table S1. Molecular weight of the polymers
- Figure S3. Stress-strain curve of the membranes
- Figure S4. Chemical structure of the membranes shown in Table 1
- Figure S5. Stability of hydrogen permeability in PFST-C₈-SO₃H membrane at 80 °C RH90%

Figure S1. ¹H-NMR spectra of the monomers

Figure S2.¹H-NMR spectra and ¹⁹F-NMR spectra of PFT-C₈-SNp (a, b) and PFST-C₈-SNp(c, d) before and after deprotection of neopentyl ester group. The peaks indicated by red arrows are derived from aromatic protons of 2,2'-spirobifluorene

Polymer	M_n (kDa)	M_w (kDa)	Polydispersity
PFT-C ₈ -SO ₃ Np	50.9	224	4.4
PFST-C ₈ -SO ₃ Np	31.3	150	4.8

Table S1 Molecular weight of the polymers

Figure S3. Stress-strain curve of the membranes

Figure S4. Chemical structure of the membranes shown in Table 1

PFST-C₈-SO₃H

PIM-1

PHFP

AF2400

