Supplementary Information (SI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2025

Electronic Supplementary Information for

Thermocatalytic synthesis of 2-butanol from biomass-derived levulinic acid using carbon-doped titania supported ruthenium

Atina Sabila Azzahra,^a Rodiansono,^{a,b*} Iryanti Fatyasari Nata,^c Kiky Corneliasari Sembiring, ^d Indri Badria Adilina,^d and Ahmad Afandi^e

^aCatalysis for Sustainable Energy & Environment (CATSuRe), Inorganic Materials & Catalysis (IMCat) Laboratory, Lambung Mangkurat University

^bDepartment of Chemistry, Lambung Mangkurat University, Jl. A. Yani Km 36 Banjarbaru, Indonesia 70714.

^cDepartment Chemical Engineering, Lambung Mangkurat University, Jl. A. Yani Km 35 Banjarbaru, Indonesia 70714

^dResearch Centre for Chemistry, BRIN, KST BJ Habibie, Serpong, Tangerang ^eResearch Centre for Advanced Materials, BRIN, KST BJ Habibie Serpong, Tangerang

*Corresponding authors: rodiansono@ulm.ac.id (R. Rodiansono). Telp. /Fax.: +62 511 477 3112

Contents:

- XRD pattern of (*op*)Ru@C-TiO₂ catalysts with different amount of carbon doping ((a) 1.0 wt%, (b) 2.0 wt%, (c) 3.0 wt%) after reduction with H₂ at 400 °C for 2 h (Fig. S1).
- Pore sizes distribution calculated by using Hovartz-Kawazoe (HK) method for (*op*)Ru@C-TiO₂ sample with (a) different amount of C-doping and (b) different reduction temperature with H₂ for 2 h (Fig. S2).
- 3) ATR-IR spectra of (a) @TiO₂, (b) @C-TiO₂ (2.0 wt%), and (c) (*op*)Ru@C-TiO₂ (2.0 wt%) catalysts after drying in room temperature (**Fig. S3**)
- 4) XRD patterns of (op)Ru@C-TiO2 (C = 2.0 wt%) after reduction with H₂ at different temperatures of
 (a) 300 °C, (b) 400 °C, and (c) 500 °C for 2 h (Fig. S4).
- 5) TEM analysis of (*op*)Ru@C-TiO₂ (2.0 wt%) catalysts after reduction with H₂ at (a) 300 °C, (b) 400 °C and (c) 500 °C for 2 h, and (d) recovered (*op*)Ru@C-TiO₂ 400 °C/H₂ catalyst (Fig. S5).
- 6) SEM analysis of (*op*)Ru@C-TiO₂ with different amount of C-doping (a) 1.0 wt%; (b) 2.0 wt%) and (c)
 3.0 wt%, and (d) typical EDS spectra of (*op*)Ru@C-TiO₂ (1.0 wt%) catalysts after reduction with H₂ at 400 °C for 2 h (Fig. S6).
- 7) Atomic composition (%) of synthesised Ru@C-TiO₂ catalyst derived from EDS data (Table S1)
- The H₂-TPR profiles of Ru@TiO₂ and (*op*)Ru@C-TiO₂ (2.0 wt%) catalysts and their deconvoluted spectra (Fig. S7).
- NH₃-TPD spectra of @TiO₂, @C-TiO₂ supports and (*op*)Ru@C-TiO₂ (2.0 wt%) catalysts and their deconvoluted spectra (Fig. S8).
- 10) ATR-IR spectra of adsorbed pyridine on the surface of (a) (*cop*)Ru@TiO₂ (*op*)Ru@C-TiO₂ (1.0 wt%),
 (c) (*op*)Ru@C-TiO₂ (2.0 wt%), and (d) (*op*)Ru@C-TiO₂ (3.0 wt%) catalysts (Fig. S9).
- 11) UV-Vis DRS spectra of (a) @TiO₂ and (b) @C-TiO₂ powders (Fig. S10)
- 12) GC chart of reaction mixture obtained from LA reaction using (*op*)Ru@C-TiO₂ (2.0 wt%) catalyst at 200 °C, H₂ 30 bar after 180 min (**Fig. S11**).
- 13) Calibration curves of reactant (LA) and products (GVL, 2-BuOH, and 2-PeOH) to obtain their response factors (Fig. S12).
- 14) The ¹H-NMR spectra of reaction mixture obtained from LA reaction to 2-BuOH (Fig. S13).
- 15) The catalytic conversion of LA to GVL over Ru-based catalysts (Table S2).
- 16) Effect of catalyst dosage on the conversion of LA to 2-BuOH (Table S3)

Fig. S1 XRD pattern of (*op*)Ru@C-TiO₂ catalysts with different amount of carbon doping ((a) 1.0 wt%, (b) 2.0 wt%, (c) 3.0 wt%) after reduction with H_2 at 400 °C for 2 h.

Fig. S2 Pore sizes distribution calculated by using Hovartz-Kawazoe (HK) method for $(op)Ru@C-TiO_2$ sample with (a) different amount of C-doping and (b) different reduction temperature with H₂ for 2 h.

Fig. S3 ATR-IR spectra of (a) $@TiO_2$, (b) $@C-TiO_2$ (2.0 wt%), and (c) (*op*)Ru@C-TiO₂ (2.0 wt%) catalysts after drying at room temperature.

Fig. S4 XRD patterns of (op)Ru@C-TiO2 (C = 2.0 wt%) after reduction with H_2 at different temperatures of (a) 300 °C, (b) 400 °C, and (c) 500 °C for 2 h.

Fig. S5 TEM analysis of (*op*)Ru@C-TiO₂ (2.0 wt%) catalysts after reduction with H₂ at (a) 300 °C, (b) 400 °C and (c) 500 °C for 2 h, and (d) recovered (*op*)Ru@C-TiO₂ 400 °C/H₂ catalyst.

Fig. S6 SEM analysis of $(op)Ru@C-TiO_2$ with different amount of C-doping (a) 1.0 wt%; (b) 2.0 wt%) and (c) 3.0 wt%, and (d) typical EDS spectra of $(op)Ru@C-TiO_2$ (1.0 wt%) catalysts after reduction with H₂ at 400 °C for 2 h.

Fistin (Comple	Ru ^a	Ti ^a	C ^b
Entry	Sample	(wt%)	(wt%)	(wt%)
1	(<i>op</i>)Ru@C-TiO ₂ (1.0 wt%)	4.91	53.12	0.29
2	(<i>op</i>)Ru@C-TiO ₂ (2.0 wt%)	4.92	50.23	1.05
3	(<i>op</i>)Ru@C-TiO ₂ (3.0 wt%)	4.89	51.72	1.72
4	(<i>cop</i>)Ru@C-TiO ₂	4.54	57.21	1.17

Table S1 Overall carbon content and bulk composition (%) of synthesised Ru@C-TiO₂ catalyst

^{*a*}The bulk composition (%) was determined by using inductively coupled plasma atomic emission spectroscopy (ICP-AES). ^{*b*}Overall carbon contents were obtained by performing an elemental analysis.

Fig. S7 The H₂-TPR profiles of Ru@TiO₂ and (*op*)Ru@C-TiO₂ (2.0 wt%) catalysts and their deconvoluted spectra.

Fig. S8 NH₃-TPD spectra of $@TiO_2$, $@C-TiO_2$ supports and (*op*)Ru@C-TiO₂ (2.0 wt%) catalysts and their deconvoluted spectra.

Fig. S9 ATR-IR spectra of adsorbed pyridine on the surface of (a) $(cop)Ru@TiO_2 (op)Ru@C-TiO_2$ (1.0 wt%), (c) $(op)Ru@C-TiO_2 (2.0 wt%)$, and (d) $(op)Ru@C-TiO_2 (3.0 wt%)$ catalysts.

Fig S10. The Kubelka-Munk profiles of (a) $@TiO_2$ and (b) $@C-TiO_2$ powders derived from UV-Vis DRS spectra.

Fig. S11 GC chart of reaction mixture obtained from LA reaction using (*op*)Ru@C-TiO₂ (2.0 wt%) catalyst at 200 °C, H₂ 30 bar after 180 min.

Fig. S12 Calibration curves of reactant (LA) and products (GVL, 2-BuOH, and 2-PeOH) to obtain their response factors.

Fig. S13 ¹H-NMR spectra of reaction mixture obtained from LA reaction to 2-BuOH in D₂O solvent using (*op*)Ru@C-TiO₂ (2.0 wt%) catalyst at 200 °C, H₂ 30 bar after 3 h.

F1	Catalyst		Yield ^a (%)					
Entry		Conv.º (%)	2-BuOH	2-PeOH	1,4-PeD	GVL	Others ^b	
1	(op)Ni@C-TiO ₂	100	2	0	6	85	8	
2	(op)Cu@C-TiO ₂	41	0	0	4	31	6	
3	(op)Co@C-TiO ₂	34	4	0	26	4	0	
4	Ru/ZrO_2	97	11	0	10	74	2	
5	$Ru/\gamma - Al_2O_3$	100	25	0	5	36	27	
6	Ru/Al_2O_3 -500	100	32	0	1	58	15	
7	$Ru-Sn/\gamma-Al_2O_3$	100	0	0	0	98	2	
8	Ru-Sn/C	100	1	0	31	63	5	
9	Ru-Ni/C	100	1	0	0	88	11	
10	Ru-MoOx/C	100	2	0	0	83	15	
11	Ru-MoOx/TiO ₂	86	2	0	0	78	6	
12	Ru-MoOx/SiO ₂	100	1	0	0	95	4	
13	@C-TiO ₂	30	0	0	0	0	30	
14	@TiO ₂	23	0	0	0	0	23	

Table S2 Results of LA catalytic conversion over various supported Ru-based catalysts

Reaction conditions: catalyst (50 mg), LA (2 mmol), H₂O (3 mL), 200 °C, 30 bar H₂, 3 h. ^{*a*}Conversion of LA and Yield of products were determined by GC using an internal standard technique. ^{*b*}Others (include 2-methyltetrahydrofuran (2-MeTHF) and 1-Pentanol (1-PeOH)) were determined by GC using total area to the LA conversion. 2-BuOH = 2-Butanol. 2-PeOH = 2-Pentanol. 1,4-PeD = 1,4-Pentanediol. GVL = γ -Valerolactone.

Entry	Catalyst dosage (g)	LA/Ru (molar ratio) ^a	Conv ^b	Yield ^b (%)				
			(%)	2-BuOH	2-PeOH	1,4-PeD	GVL	Others ^c
1	0.0522	75	100	87	11	0	2	0
2	0.0251	159	100	37	11	0	40	12
3	0.0126	324	100	2	0	0	93	5

Table S3. Effect of catalyst dosage on the conversion of LA to 2-BuOH.

Reaction conditions: catalyst = (*op*)Ru@C-TiO₂ (2.0 wt%) 400 °C/H₂, LA (2 mmol), solvent (3 mL), 200 °C, 30 bar H₂, 3 h. ^{*a*}The molar ratio of reactant to catalyst was estimated based on the rough amount of Ru precursor in the (*op*)Ru@C-TiO₂. ^{*b*}Conversion of LA and yield of products were determined by GC using an internal standard technique. ^{*c*}Others (include 2-methyltetrahydrofuran (2-MeTHF) and 1-Pentanol (1-PeOH)) were determined by GC using total area to the LA conversion. 2-BuOH = 2-Butanol. 2-PeOH = 2-Pentanol. 1,4-PeD = 1,4-Pentanediol. GVL = γ -Valerolactone.