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Photograph of the 1-mm-gap reactor  

 

Figure S1 Photograph of the 1-mm-gap reactor filled with 35 mg of Co5Ni95@SiO2 catalyst. 

 

 

Figure S2 Top view of the reactors under light irradiation with a spot diameter of 11 mm. The 

cross-sectional area for light absorption (S) was calculated from the overlap between the catalyst 

zone and the light spot.   



Supplementary Note 1 

To measure the temperature, we fixed a thin thermocouple (diameter: 0.5 mm) at the back side of 

the catalyst zone in the 2-mm-gap reactor (i.e., the surface in contact with the quartz filler, center 

position in the quartz filler). Then, the catalyst was filled into the reactor and was reduced under 

the same conditions as described in the experimental section in the manuscript. After the catalyst 

was cooled down, an argon gas was flowed at 200 mL min–1, and the temperature of the backside 

of the catalyst was recorded under light irradiation (P = 25 W and Φ = 7 mm). The obtained 

temperature at the backside was around 723 °C. Simultaneously, the surface temperature recorded 

using the IR thermometer was 917 °C. The results indicated there was a significant difference in 

the temperature of the surface and backside, supporting our argument that narrowing down the 

difference between the backside and surface temperatures of the catalyst zone had a positive impact 

on the performance of the CH4 reforming. 

 



 

Figure S3 Chemical equilibrium conversion and H2/CO ratio of DRM reaction calculated by the 

NASA CEA program. 

  



 

Figure S4 The light-to-fuel conversion efficiency (η) calculated from activity tests using 1-, 2-, 

and 3-mm-gap reactors (light power: 18, 21.5, and 25 W, and spot size: 11 mm) 

 

 

Figure S5 Results of activity test using 4-mm tubular reactor under P = 25 W, with Spot 

diameter = 7 mm, Spot position: Middle. 

 

  



Table S1 Selected results of light-driven dry reforming of methane without external heating. 

Catalyst 
Reactor 

type 
Light source 

Feed /[a]  

mL min–1 

Conversion (%) 
Efficiency 

(%) [b] 

Details of  

light conditions[c] 
Ref.[d] 

CH4 CO2   

Co5Ni95@SiO2 Gap 

reactor, 

Tube- 

based, 

Xe lamp, 

300 W 

FCH4 = 22.5 

FCO2 = 22.5 

72 78 η = 6.0 P = 25 W 

Φ = 7 mm 

I = 650 kW m–2 

λ > 435 nm 

This work 

NiCo/ 

MgO-Al2O3 

(Ni/Co = 1) 

Stainless-

steel 

cavity 

reactor 

Xe lamp, 

300 W 

FCH4 = (44.4) 

FCO2 = (44.7) 

n.d.[e] 

 (~55) 

n.d.[e] 

(~63) 

η = 33.8 P = 12.6 W 

Φ = 6 mm 

I = 445.6 kW m–2 

Full spectrum (Xe) 

[1] 

NiCo@MgO/MgO 

(Ni/Co = 2) 

Stainless-

steel 

cavity 

reactor 

Xe lamp, 

500 W 

FCH4 = 36 

FCO2 = 36 

n.d.[e] 

(~40) 

n.d.[e] 

(~48) 

η = 39.3 P = 7.8 W 

Φ = 5 mm 

I: = 396.8 kW m–2 

Full spectrum (Xe) 

[2] 

Co5Ni95@SiO2 Tube-

based 

reactor 

Xe lamp, 

300 W 

FCH4 = 20 

FCO2 = 25 

40 41 η = 6.5 P = 25 W 

Φ = 7 mm 

I = 650 kW m–2 

λ > 435 nm 

[3] 

Co/Mg-CoAl2O4 Stainless-

steel 

cavity 

reactor 

Xe lamp 

500 W 

FCH4 = (27.2) 

FCO2 = (27.7) 

n.d.[e] 

(~37) 

n.d.[e] 

(~45) 

η = 34.2 P = 6.3 W 

Φ = 10 mm 

I = 80.5 kW m–2 

Full spectrum 

[4] 

Silica-cluster-

modified Ni/SiO2  

Stainless-

steel 

cavity 

reactor 

Xe lamp 

500 W 

FCH4 = (13.9) 

FCO2 = (13.7) 

 

n.d.[e] 

(~37) 

n.d.[e] 

(~41) 

η = 12.5 P = 6.74 W 

Φ = 5 mm 

I = 343.6 kW m–2 

Full spectrum 

[5] 

Pt/Co–Al2O3 Stainless-

steel 

cavity 

reactor 

Xe lamp 

500 W 

FCH4 = (25.7) 

FCO2 = (25.8) 

n.d.[e] 

(~35) 

n.d.[e] 

(~43) 

η = 27.2 P = 6.7 W 

Φ = 5 mm 

I = 343.0 kW m–2 

Full spectrum (Xe) 

[6] 

Rh/SrTiO3 Stainless-

steel 

cavity 

reactor 

Hg–Xe lamp, 

150 W 

FCH4 = (0.01) 

FCO2 = (0.01) 

n.d.[e] 

(~28) 

n.d.[e] 

(~28) 

AQE = 

5.9 

Absorbed photon 

number: 1.25 × 1017 

(quanta cm –2 s –1 ) 

 

[7] 

1.2Ni-0.3Co/SiO2 flow type 

reactor 

Xe lamp, 

300 W 

FCH4 = 9.6 

FCO2 = 9.6 

- n.d.[e] 

(~23) 

- I = 90 kW m–2 [8] 

25 wt% Ni/SiO2 Tube-

based 

reactor 

Xe lamp, 

300 W 

FCH4 = 20 

FCO2 = 25 

8.2 7.5 - P = 17.3 W 

Φ = 20 mm 

I = 55 kW m–2 

λ > 435 nm 

[9]  

[a] F: flow rate of CO2 or CH4 (mL min–1). [b] η: light-to-fuel conversion efficiency, AQE: apparent quantum efficiency as reported by the authors. [c] Conditions of light 

irradiation. P: power, Φ:  light spot diameter, I: light intensity, and λ: wavelength of light. [d] Reference. [e] No data.  The values in parentheses are calculated ones based 

on the values or Figures in the papers. 
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