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Table S1.
Physical properties of Acrylamide (AAm) solvent for different monomer weight percentage.

Monomer weight % Surface tension,  (mN/m)𝛾 Density,  (kg/m3)𝜌

2.5 70.9±0.2 999.7

4.0 69.6±0.1 1001.0

6.3 65.7±0.1 1003.1

6.5 65.6±0.2 1003.3

7.0 65.6±0.1 1003.8

7.5 64.8±0.3 1004.3

10.0 64.2±0.2 1006.8

13.0 61.9±0.1 1009.8

20.0 60.6±0.2 1013.3

30.0 57.3±0.1 1019.4

Electronic Supplementary Material (ESI) for Soft Matter.
This journal is © The Royal Society of Chemistry 2024

mailto:zhaob@uwaterloo.ca
mailto:skmitra@uwaterloo.ca


Table S2. 
Comparison of elasto-adhesive parameter between our study and certain existing literature

Literature Top contacting pair Bottom contacting pair 𝐸 ∗ 𝑅0/𝑤

Rimai et al. 
J. Appl. Phys. (1989) 

Polystyrene sphere (
 100 – 1000 MPa)𝐸1 =

Polyurethane rubber (
5 MPa)𝐸2 =  5 – 205

Rimai et al. 
Langmuir (1994)

Glass sphere
Polyurethane rubber (

45 kPa)𝐸2 =  5 – 67 

Style et al. 
Nat. Commun. (2013)

Glass sphere
Silicone gel 

( 3 – 500 kPa)𝐸2 =  0.15 – 88 

Jensen et al. 
PNAS (2015)

Glass sphere
Silicone gel 

(  5.6 kPa)𝐸2 = 1.5 – 3.2 

Chakrabarti et al. 
Langmuir (2018)

Polyacrylamide 
hydrogel sphere 

( 180 – 2367 kPa)𝐸1 =
Bare and silanized 

silicon wafer 750 – 104 

Present work
Hydrogel sphere (

0.0057 – 106.65 𝐸1 =  
kPa), glass sphere

PDMS ( 3 – 6855 𝐸2 =  
kPa), glass slides

0.05 – 2 105×



Figure S1. Rheology of hydrogels. Variation of storage modulus ( ) and loss modulus ( ) with𝐺' 𝐺''
angular frequency  for hydrogels with different monomer weight percentages. The static shear modulus 𝜔

 is calculated using  at  1 Hz.𝐺 𝐺 =  𝐺'2 + 𝐺''2 𝜔 =



Figure S2. Rheology of hydrogels. (a) Variation of storage modulus ( ) and loss modulus ( ) with 𝐺' 𝐺''
angular frequency  for PAAm 13.0%, i.e., hydrogel with 13.0% monomer weight percentage. The static 𝜔

shear modulus  is calculated using  at 1 Hz. (b) Variation of shear viscosity  with 𝐺 𝐺 =  𝐺'2 + 𝐺''2 𝜔 =  𝜇
shear rate ˙ for the liquid hydrogel, i.e., hydrogel with 2.5% monomer weight percentage.𝛾



Figure S3. Rheology of soft substrates. Variation of storage modulus ( ) and loss modulus ( ) with 𝐺' 𝐺''
angular frequency  for substrates prepared combining Sylgard 184 PDMS (10:1) and Sylgard 527 (1:1) in 𝜔

different weight ratios. The static shear modulus  is calculated using  at 1 Hz.𝐺 𝐺 =  𝐺'2 + 𝐺''2 𝜔 =  



Figure S4. Rheology of soft substrates with plasma treatment. Variation of storage modulus ( ) and 𝐺'
loss modulus ( ) with angular frequency  for substrates prepared combining Sylgard 184 PDMS (10:1) 𝐺'' 𝜔
and Sylgard 527 (1:1) in different weight ratios for with and without plasma-treatment. The static shear 
modulus  is calculated using  at 1 Hz.𝐺 𝐺 =  𝐺'2 + 𝐺''2 𝜔 =  



Figure S5. AFM measurements. (a) Atomic force microscopy (AFM) scan on a 10 µm  10 µm cross-×

section of a plasma treated PDMS substrates with elastic modulus,  6855 kPa.  and  values for 𝐸2 = 𝑅𝑞  𝑅𝑎

the scan are shown. (b) Three-dimensional profile of the scan shown in (a).



Figure S6. Experimental snapshots of hydrogels on surfaces highlighting the fitting procedure to extract 
the foot contact angle  and apparent macroscopic angle away from the foot .𝜃 ∗ 𝜃𝑚



Figure S7. Glass sphere on soft PDMS. Bottom-view bright-field microscopy images of 1mm radius rigid 
glass spheres in contact with soft PDMS substrates for varying elasticity ( ).  denotes the contact radius. 𝐸2 𝑎
Note the different scale bars.



Figure S8. (a) Experimental snapshots of the static configuration of different hydrogels on plasma-treated 
soft substrates with elasticity  3 kPa and 6855 kPa. Scale bars represent 0.5 mm. (b) 𝐸2 =  𝐸2 =  

Schematics of the different possible hydrogel profiles of initial radius  on the soft substrates.  and  𝑅0 𝜃𝑚 𝜃 ∗

are the macroscopic and foot contact angles, respectively.  and  are the real and apparent contact 𝑎 𝑎0

radius, respectively.  is the apparent indentation depth.  and  are the foot height and length, respectively. 𝛿 ℎ 𝑙



Figure S9: Variation of macroscopic contact angle θm with the elasticity ratio of the top (hydrogel, E1) and 
bottom (PDMS, glass, E2) pair E1/E2. The solid curve is a guide for the eye.



Figure S10. Hydrogel contact angles. Variation of contact angles ( ) of hydrogels of varying 𝜃𝑚, 𝜃 ∗

elasticity ( ) on pristine (a) and plasma treated (b), soft PDMS substrates of varying elasticity ( ).𝐸1 𝐸2



Figure S11. Variation of hydrogel contact radius (a), foot-height (b) for different hydrogel elasticity ( ) 𝐸1

on relatively soft PDMS (  3 kPa), relatively stiff PDMS (  6855 kPa) and rigid glass slides 𝐸2 = 𝐸2 =

( 107 kPa). The data for rigid glass sphere is also shown for (a). The hydrogel with the lowest elasticity, 𝐸2 ≈

i.e.,   exhibits no foot on the softest PDMS substrate, i.e.,  3 kPa (inset of (b)). The  𝐸1 = 0.0057 𝑘𝑃𝑎 𝐸2 =

radius of hydrogel is  1 mm. All soft substrates are 2 mm thick.𝑅0 ≈



Figure S12. Hydrogels on plasma treated PDMS. Variation of hydrogel contact radius (a), foot- height 
(b), apparent indentation depth (c) and foot-length (d) for different hydrogel elasticity ( ) on relatively soft 𝐸1 

PDMS (  3 kPa) and relatively stiff PDMS (  6855 kPa). The hydrogel with the lowest elasticity, 𝐸2 = 𝐸2 =

i.e.,  0.0057 kPa exhibits no foot on either of the plasma treated PDMS substrates (inset of (b)). The 𝐸1 =

radius of hydrogel is  1 mm. All soft substrates are 2 mm thick.𝑅0 ≈



S1.1 Adhesion measurements

For measuring the work of adhesion between hydrogel and PDMS, we used a cantilever-based 
force probe [1]. A polymeric capillary tube of diameter  µm and spring constant,   410 𝑘 = 305 ±

 nN/µm is used as the cantilever probe. A hydrogel sphere/droplet was attached to the tip of the 6.1
probe and the PDMS substrate (affixed to a linear actuator) was made to approach the probe at a 
prescribed velocity of 0.1 mm/s. Once contact was established, there was a hold time of 10-20 s 
after which the PDMS substrate was made to retract. The adhesion induced interaction between 
PDMS, and the hydrogel probe caused deflection  of the cantilever. Consequently, the maximum 𝑥
deflection  was measured, and the corresponding peak adhesion force was calculated using, ∆𝑥

 (Fig. S13). The work of adhesion is calculated using the relation for critical pull-off force: 𝐹 =  𝑘∆𝑥

 [2,3] However, for the present case of different hydrogel contacts, we have 𝐹𝑐,𝐽𝐾𝑅 ≈ 3𝜋𝑅0𝑤/2 
added contributions to the above expression. The first added contribution comes from the capillary 

force from the hydrogel foot [4],  where  and  are 𝐹𝑓 ≈ 2𝜋𝑅0𝛾(𝑐𝑜𝑠𝜃 ∗
𝐿 + 𝑐𝑜𝑠𝜃 ∗

𝑅 ) ≈  4𝜋𝑅0𝛾𝑐𝑜𝑠𝜃 ∗ , 𝜃 ∗
𝐿 𝜃 ∗

𝑅

the foot contact angles. The second contribution comes from the capillary force from the spherical 

cap profile [5], , where  is the vertical height of the hydrogel. Thus, the critical 𝐹𝑐 ≈ 𝜋𝛾(𝑎2 + 𝑏2)/𝑏 𝑏

force becomes,  For example, for the experiment 𝐹 ≈ 4𝜋𝑅0𝛾𝑐𝑜𝑠𝜃 ∗ + 𝜋𝛾(𝑎2 + 𝑏2)/𝑏 + 3𝜋𝑅0𝑤/2.

shown in Fig. S13, we obtain the peak (pull-off) force  mN. Consequently, using   𝐹 = 1.6 𝛾 = 61.9

mN/m,  mm, mm, mm, and , we calculate mN/m. 𝑎 ≈ 0.48 𝑏 ≈  1.97 𝑅0 ≈  1 𝜃 ∗  ≈  50° 𝑤 ≈  128 
Incidentally, the calculated adhesion force is close to that obtained using , an assumption 𝑤 ≈ 2𝛾
extensively used in existing literature [4,6,7]. At the same time, the present observation indicates a 
few things. First, if the rationale of w ~ (1+cosθ)γ is used for adhesion calculation, using θm would 
lead to reduced w for the stiffer hydrogels. Consequently, the data points in Fig. 7 of the main 
manuscript would shift to the right and fall beyond the JKR predictions. Thus, it is more likely that 
the microscopic foot contact angle θ* plays a role in dictating w. Since high accuracy in measuring 
θ* is currently not possible, the authors hypothesize that the foot curvature becomes highly acute 
in meeting the substrate and may achieve a value close to 0 which makes w~2γ appropriate for 
most of the hydrogels.



Figure S13. Cantilever-based force measurements. (a) Experimental snapshots of the cantilever-based 
contact force/adhesion measurements for a 1 mm radius hydrogel (  106.65 kPa) with soft PDMS 𝐸1 =

substrate ( 3 kPa). The different stages of force measurements: approach of the substrate, contact, 𝐸2 =  

hold, retraction of the substrate, maximum deflection of the cantilever and detachment are shown. 0 𝑡 ≈  
represents the onset of substrate retraction. Scale bars represent 5 mm. (b) Evolution of cantilever 
deflection  (measured) and force  (extracted) for the experiment shown in (a).  represents the maximum 𝑥 𝐹 ∆𝑥
cantilever deflection. The blue arrows represent the direction of substrate motion.



Figure S14: Variation of normalized foot height h/R0 with the elasto-adhesive parameter E*R0/w for all the 
hydrogels on the different soft substrates shown in Fig. 8b of the main manuscript. The solid line represents 
the power-law best fit with an exponent of -0.49. 

Figure S15: Variation of normalized foot height h/R0 with the elasto-adhesive parameter E*R0/w for all the 
hydrogels on the different soft substrates shown in Fig. 8b of the main manuscript. The dotted lines 
represent the power-law fit with an exponent of (a) -0.4 and (b) -0.6.

S1.2 Detailed derivation of the relation between strain and elasto adhesive parameter (Eq.2 
of the manuscript)

As highlighted in the main manuscript, for the small-to-large deformations present for the 
contact/wetting system of hydrogels on all the surfaces used , the appropriate elastic energy Uel 
can be expressed as [5,8,9]:



                                        (S1)
𝑈𝑒𝑙~𝐸 ∗ 𝑅3

0

𝑎/𝑅0

∫
0

[
1
2

‒
(1 + 𝑥'2)

4𝑥'
𝑙𝑛(1 + 𝑥'

1 ‒ 𝑥')]2𝑑𝑥'

where, . Here,  and , elastic moduli and Poisson’s 𝐸 ∗ = [(1 ‒ 𝜈2
1)/𝐸1 + (1 ‒ 𝜈2

2)/𝐸2] ‒ 1 𝐸1, 𝜈1  𝐸2, 𝜈2

ratios of the top (hydrogel) and bottom (glass, PDMS) pair, respectively. R0 is the hydrogel radius, 
a is the contact radius, and x’ = a/R0 is the normalized contact radius or strain. Consequently, 

using the approximation,  we can express the elastic energy as,ln [(1 + 𝑥') (1 ‒ 𝑥')] ≈ 2tanh ‒ 1 𝑥'

                                   (S2)
𝑈𝑒𝑙 ≈ 𝐸 ∗ 𝑅3

0

𝑎/𝑅0

∫
0

[1
2

‒
(1 + 𝑥'2)

4𝑥'
2tan ‒ 1 𝑥]2𝑑𝑥'

Consequently, using the approximation, , we can express Uel  as, 
2tanh ‒ 1 𝑥' ≈ 2(𝑥' +

𝑥'3

3 )

                                                                                       (S3)
𝑈𝑒𝑙 ≈ 𝐸 ∗ 𝑅3

0

𝑎/𝑅0

∫
0

[
1
2

‒
(1 + 𝑥'2)

2𝑥' (𝑥' +
𝑥'3

3 )]2𝑑𝑥'

Upon evaluating all the algebraic terms within the third bracket, we arrive at 

                                                                                                   (S4)
𝑈𝑒𝑙 ≈ 𝐸 ∗ 𝑅3

0

𝑎/𝑅0

∫
0

1
4[ ‒

𝑥'4

3
‒

4𝑥'2

3 ]2𝑑𝑥'

Upon evaluating the squared term, we arrive at the final form of the integral,

                                                                                      (S5)
𝑈𝑒𝑙 ≈ 𝐸 ∗ 𝑅3

0

𝑎/𝑅0

∫
0

1
36

(𝑥'8 + 8𝑥'6 + 16𝑥'4)𝑑𝑥'

Consequently, evaluating the integral within the limit 0 and a/R0, we obtain the final 
algebraic form of the elastic energy  Uel,

                                                                                         (S6)
       𝑈𝑒𝑙 ≈

𝐸 ∗ 𝑅3
0

36 [1
9( 𝑎

𝑅0
)9 +

8
7( 𝑎

𝑅0
)7 +

16
5 ( 𝑎

𝑅0
)5]

Therefore, the total energy can be expressed as, U = Uel + Uad = Uel – πwa2.  Upon minimizing 

with respect to the contact radius a, i.e., , we obtain

∂𝑈
∂𝑎

= 0

                               (S7)

𝐸 ∗ 𝑅2
0

36 [( 𝑎
𝑅0

)8 + 8( 𝑎
𝑅0

)6 + 16( 𝑎
𝑅0

)4] ‒ 2𝜋𝑤𝑎 = 0

Upon rearranging the terms, we obtain the final algebraic relation between strain a/R0 and the 
elasto- adhesive parameter E*R0/w:

                                                                                                   (S8)
[( 𝑎

𝑅0
)7 + 8( 𝑎

𝑅0
)5 + 16( 𝑎

𝑅0
)3] =

72𝜋𝑤

𝐸 ∗ 𝑅0



Thus, we obtain Equation 2 in the main manuscript.
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