Supplementary Information

Flexible hydrogels connecting adhesion and wetting

A-Reum Kim^{a,1}, Surjyasish Mitra^{a,2}, Sudip Shyam², Boxin Zhao^{1*} and Sushanta K. Mitra^{2*}

¹ Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada. ² Department of Mechanical & Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.

* To whom correspondence should be addressed. E-mail: zhaob@uwaterloo.ca (Boxin Zhao) and skmitra@uwaterloo.ca (Sushanta K. Mitra).

a These authors contributed equally.

Table S1.

Physical properties of Acrylamide (AAm) solvent for different monomer weight percentage.

Table S2.

Comparison of elasto-adhesive parameter between our study and certain existing literature

Figure S1. Rheology of hydrogels. Variation of storage modulus (') and loss modulus ('') with angular frequency ω for hydrogels with different monomer weight percentages. The static shear modulus G is calculated using $G = \sqrt{G^{'2} + G^{''2}}$ at $\omega =$ 1 Hz.

Figure S2. Rheology of hydrogels. (a) Variation of storage modulus (^{G'}) and loss modulus (^{G''}) with angular frequency ω for PAAm 13.0%, i.e., hydrogel with 13.0% monomer weight percentage. The static shear modulus G is calculated using $G=\sqrt{G^{'2}+G^{'^2}}$ at $\omega=$ 1 Hz. (b) Variation of shear viscosity μ with shear rate Y for the liquid hydrogel, i.e., hydrogel with 2.5% monomer weight percentage.

Figure S3. Rheology of soft substrates. Variation of storage modulus (') and loss modulus ('') with angular frequency ω for substrates prepared combining Sylgard 184 PDMS (10:1) and Sylgard 527 (1:1) in different weight ratios. The static shear modulus G is calculated using G = $\sqrt{G^{'2}+G^{''2}}$ at ω = 1 Hz.

Figure S4. Rheology of soft substrates with plasma treatment. Variation of storage modulus (G') and loss modulus (G ") with angular frequency ω for substrates prepared combining Sylgard 184 PDMS (10:1) and Sylgard 527 (1:1) in different weight ratios for with and without plasma-treatment. The static shear modulus G is calculated using $G = \sqrt{G^{'2} + G^{'2}}$ at ω = 1 Hz.

Figure S5. AFM measurements. (a) Atomic force microscopy (AFM) scan on a 10 µm \times 10 µm crosssection of a plasma treated PDMS substrates with elastic modulus, $\bar{E_2}$ = $\,$ 6855 kPa. $^R q$ and $^R a$ values for the scan are shown. (b) Three-dimensional profile of the scan shown in (a).

Figure S6. Experimental snapshots of hydrogels on surfaces highlighting the fitting procedure to extract the foot contact angle $\theta^{\, *}$ and apparent macroscopic angle away from the foot θ_{m} .

Figure S7. Glass sphere on soft PDMS. Bottom-view bright-field microscopy images of 1mm radius rigid glass spheres in contact with soft PDMS substrates for varying elasticity $(^{E_2})$. a denotes the contact radius. Note the different scale bars.

Figure S8. (a) Experimental snapshots of the static configuration of different hydrogels on plasma-treated soft substrates with elasticity $\overline{E}_2 = 3$ kPa and $\overline{E}_2 = 6855$ kPa. Scale bars represent 0.5 mm. (b) Schematics of the different possible hydrogel profiles of initial radius R 0 on the soft substrates. θ_m and θ^* are the macroscopic and foot contact angles, respectively. a and a_0 are the real and apparent contact radius, respectively. δ is the apparent indentation depth. h and l are the foot height and length, respectively.

Figure S9: Variation of macroscopic contact angle θ_m with the elasticity ratio of the top (hydrogel, E_1) and bottom (PDMS, glass, E_2) pair E₁/E₂. The solid curve is a guide for the eye.

Figure S10. Hydrogel contact angles. Variation of contact angles $({}^{\theta_{m^\prime}}\mathbf{{}^{\theta}}^*)$ of hydrogels of varying elasticity $({}^{E}{}_{1})$ on pristine (a) and plasma treated (b), soft PDMS substrates of varying elasticity (${}^{E}{}_{2}$).

Figure S11. Variation of hydrogel contact radius (a), foot-height (b) for different hydrogel elasticity (E 1) on relatively soft PDMS ($\bar{E_2}$ = $\overline{3}$ kPa), relatively stiff PDMS ($\bar{E_2}$ = 6855 kPa) and rigid glass slides $\binom{E_2 \approx 10^7 \text{ kPa}}{2.7 \times 10^7 \text{ kPa}}$. The data for rigid glass sphere is also shown for (a). The hydrogel with the lowest elasticity, i.e., $E_1 = 0.0057 kPa$ exhibits no foot on the softest PDMS substrate, i.e., $E_2 = 3 kPa$ (inset of (b)). The radius of hydrogel is $R_0 \approx 1$ mm. All soft substrates are 2 mm thick.

Figure S12. Hydrogels on plasma treated PDMS. Variation of hydrogel contact radius (a), foot- height (b), apparent indentation depth (c) and foot-length (d) for different hydrogel elasticity $(\overset{E_1}{})$ on relatively soft PDMS (E_2 = $\,$ 3 kPa) and relatively stiff PDMS (E_2 = 6855 kPa). The hydrogel with the lowest elasticity, i.e., $E_1 = 0.0057$ kPa exhibits no foot on either of the plasma treated PDMS substrates (inset of (b)). The radius of hydrogel is $R_0 \approx 1$ mm. All soft substrates are 2 mm thick.

S1.1 Adhesion measurements

For measuring the work of adhesion between hydrogel and PDMS, we used a cantilever-based force probe [1]. A polymeric capillary tube of diameter 410 um and spring constant, $k = 305 \pm 10$ 6.1 nN/ μ m is used as the cantilever probe. A hydrogel sphere/droplet was attached to the tip of the probe and the PDMS substrate (affixed to a linear actuator) was made to approach the probe at a prescribed velocity of 0.1 mm/s. Once contact was established, there was a hold time of 10-20 s after which the PDMS substrate was made to retract. The adhesion induced interaction between PDMS, and the hydrogel probe caused deflection x of the cantilever. Consequently, the maximum deflection Δx was measured, and the corresponding peak adhesion force was calculated using, $F = k\Delta x$ (Fig. S13). The work of adhesion is calculated using the relation for critical pull-off force: $F_{c, JKR} \approx 3\pi \tilde{R_0} w/2$ [2,3] However, for the present case of different hydrogel contacts, we have added contributions to the above expression. The first added contribution comes from the capillary force from the hydrogel foot [4], $F_f \approx 2\pi R_0 \gamma\big(cos\theta_L^*+cos\theta_R^*\big) \approx~4\pi R_0 \gamma cos\theta^*$, where θ_L^* and θ_R^* are the foot contact angles. The second contribution comes from the capillary force from the spherical cap profile [5], ${F_c} \approx \pi \gamma (a^2 + b^2)/b_{,\,}$ where b is the vertical height of the hydrogel. Thus, the critical force becomes, $F \approx 4\pi R_0 \gamma cos\theta^* + \pi \gamma (a^2 + b^2)/b + 3\pi R_0 w/2$. For example, for the experiment shown in Fig. S13, we obtain the peak (pull-off) force $F = ~1.6$ mN. Consequently, using $\gamma = ~61.9$ mN/m, $a \approx 0.48$ mm, $b \approx 1.97$ mm, $R_0 \approx 1$ mm, and $\theta^* \approx 50^\circ$, we calculate $w \approx 128$ mN/m. Incidentally, the calculated adhesion force is close to that obtained using $w \approx 2\gamma$, an assumption extensively used in existing literature [4,6,7]. At the same time, the present observation indicates a few things. First, if the rationale of *w* ~ (1+cosθ)*γ* is used for adhesion calculation, using θ_m would lead to reduced *w* for the stiffer hydrogels. Consequently, the data points in Fig. 7 of the main manuscript would shift to the right and fall beyond the JKR predictions. Thus, it is more likely that the microscopic foot contact angle θ* plays a role in dictating *w*. Since high accuracy in measuring θ^* is currently not possible, the authors hypothesize that the foot curvature becomes highly acute in meeting the substrate and may achieve a value close to 0 which makes *w*~2*γ* appropriate for most of the hydrogels.

Figure S13. Cantilever-based force measurements. (a) Experimental snapshots of the cantilever-based contact force/adhesion measurements for a 1 mm radius hydrogel $(F_1 = 106.65$ kPa) with soft PDMS substrate $\binom{E_2}{2}$ 3 kPa). The different stages of force measurements: approach of the substrate, contact, hold, retraction of the substrate, maximum deflection of the cantilever and detachment are shown. $t \approx 0$ represents the onset of substrate retraction. Scale bars represent 5 mm. (b) Evolution of cantilever deflection x (measured) and force F (extracted) for the experiment shown in (a). Δx represents the maximum cantilever deflection. The blue arrows represent the direction of substrate motion.

Figure S14: Variation of normalized foot height h/R_0 with the elasto-adhesive parameter E^*R_0/w for all the hydrogels on the different soft substrates shown in Fig. 8b of the main manuscript. The solid line represents the power-law best fit with an exponent of -0.49.

Figure S15: Variation of normalized foot height h/R_0 with the elasto-adhesive parameter E^*R_0/w for all the hydrogels on the different soft substrates shown in Fig. 8b of the main manuscript. The dotted lines represent the power-law fit with an exponent of (a) -0.4 and (b) -0.6.

S1.2 Detailed derivation of the relation between strain and elasto adhesive parameter (Eq.2 of the manuscript)

As highlighted in the main manuscript, for the small-to-large deformations present for the contact/wetting system of hydrogels on all the surfaces used , the appropriate elastic energy *U*el can be expressed as [5,8,9]:

$$
U_{el} \sim E^* R_0^3 \int_0^{a/R_0} \left[\frac{1}{2} - \frac{(1+x^2)}{4x'} ln\left(\frac{1+x'}{1-x'}\right)\right]^2 dx' \tag{S1}
$$

where, $E^*=[(1-v_1^2)/E_1+(1-v_2^2)/E_2]^{-1}$. Here, E_1 , v_1 and E_2 , v_2 , elastic moduli and Poisson's ratios of the top (hydrogel) and bottom (glass, PDMS) pair, respectively. $R_{\rm 0}$ is the hydrogel radius, *a* is the contact radius, and *x*' = *a*/*R*⁰ is the normalized contact radius or strain. Consequently, using the approximation, $\ln [(1 + x) / (1 - x)] \approx 2 \tanh^{-1} x^{'}$ we can express the elastic energy as,

$$
U_{el} \approx E^* R_0^3 \int_0^{a/2} \left[\frac{1}{2} - \frac{(1+x^2)}{4x} 2 \tan^{-1} x \right]^2 dx \tag{S2}
$$

Consequently, using the approximation, $\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \texttt{(~\qquad 9~J, we can express $U_{\sf el}$ as,}$ $2\tanh^{-1} x \approx 2\left(x^{2} + \frac{x^{3}}{3}\right)$ $\overline{3}$ a_{L}

$$
U_{el} \approx E^* R_0^3 \int_0^{u/R_0} \left[\frac{1}{2} - \frac{(1+x^2)}{2x'}\left(x' + \frac{x'^3}{3}\right)\right]^2 dx' \tag{S3}
$$

Upon evaluating all the algebraic terms within the third bracket, we arrive at

$$
U_{el} \approx E^* R_0^3 \int_0^{a/2} \frac{1}{4} \left[-\frac{x'^4}{3} - \frac{4x'^2}{3} \right]^2 dx'
$$
 (S4)

Upon evaluating the squared term, we arrive at the final form of the integral,

$$
U_{el} \approx E^* R_0^3 \int_0^{a/0} \frac{1}{36} (x^{.8} + 8x^{.6} + 16x^{.4}) dx^{.}
$$
 (S5)

Consequently, evaluating the integral within the limit 0 and *a*/*R*0, we obtain the final algebraic form of the elastic energy *U*el,

$$
U_{el} \approx \frac{E^* \bar{R}_0^3}{36} \left[\frac{1}{9} \left(\frac{a}{R_0} \right)^9 + \frac{8}{7} \left(\frac{a}{R_0} \right)^7 + \frac{16}{5} \left(\frac{a}{R_0} \right)^5 \right]
$$
(S6)

Therefore, the total energy can be expressed as, *U* = *U*el + *U*ad = *U*el – π*wa*² . Upon minimizing with respect to the contact radius a, i.e., $^{\theta a}$ \quad , we obtain ∂U $\frac{\partial}{\partial a} = 0$

$$
\frac{E^* R_0^2}{36} \left[\left(\frac{a}{R_0} \right)^8 + 8 \left(\frac{a}{R_0} \right)^6 + 16 \left(\frac{a}{R_0} \right)^4 \right] - 2\pi w a = 0 \tag{S7}
$$

Upon rearranging the terms, we obtain the final algebraic relation between strain a/*R*₀ and the elasto- adhesive parameter E^*R_0/w :

$$
\left[\left(\frac{a}{R_0} \right)^7 + 8 \left(\frac{a}{R_0} \right)^5 + 16 \left(\frac{a}{R_0} \right)^3 \right] = \frac{72\pi w}{E^* R_0}
$$
\n(S8)

Thus, we obtain Equation 2 in the main manuscript.

References:

- [1] S. Shyam, S. Misra, S. K. Mitra, J. Colloid Interface Sci. 2023, 630 322.
- [2] K. L. Johnson, K. Kendall, A. D. Roberts, Proc. Royal Soc. Lon. A. 1971, 324, 1558 301.
- [3] P. Prokopovich, V. Starov, Adv. Colloid Interface Sci. 2011, 168, 1-2 210.
- [4] H.-J. Butt, B. Cappella, M. Kappl, Surf. Sci. Rep. 2005, 59, 1-6 1.
- [5] T. Salez, M. Benzaquen, E. Raphael, Soft Matter 2013, 9, 45 10699.
- [6] K.-K. Liu, J. Phys. D: Appl. Phys. 2006, 39, 11 R189.
- [7] A.-R. Kim, S. K. Mitra, B. Zhao, J. Colloid Interface Sci. 2022, 628 788.
- [8] D. Maugis, *Langmuir*, 1995, 11, 679–682.
- [9] D. Maugis, D., M. Barquins, *J. Phys. D: Appl. Phys.*,1983, *16*(10), 1843.