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A Simulations with a finer spatial resolution
All the results presented in the main text were obtained through hydrodynamic simulations with the numerical mesh size ` set to 1. To
briefly assess the impact of the mesh size on these simulation results, additional simulations were performed with half the mesh size
(` = 0.5). For ` = 0.5, we set the total number of the grid points to be the same as that employed in the main text (512× 512), whereby
the system’s linear dimension is L = 256. Given the existence of system size dependence, which is more significant for larger φ, we also
conducted simulations with ` = 1 and L = 256 to directly compare the results between systems under consistent linear dimensions L
but different mesh sizes `. Figure S1(a) displays the viscosity measured at the walls as a function of the shear rate, showing negligible
differences in η(γ̇) between ` = 1 and 0.5. As mentioned above, η(γ̇) depends on system size and is slightly larger for L = 256 than for
L = 512 (please see Fig. 1(b) in the main text). Figure S1(b) shows a typical snapshot of a spatial pattern of i2/γ̇2, which is similar to
those obtained for ` = 1 shown in Fig. 2 in the main text.

The present results suggest little impact from variations in `; however, this is not conclusive due to the limited range of ` values
examined. As ` decreases, the necessary time step required to maintain numerical stability for solving Navier-Stokes equation decreases
significantly, making further assessments increasingly difficult. Examining the mesh size dependence for smaller ` remains as a future
task.
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Fig. S1 (a) The viscosity measured at the walls η(φ) for varous φ for two different mesh size: the closed circles and crosses represent the results for
the mesh sizes ` = 1 and 0.5, respectively. They are almost correspond to each other. (b) A typical snapshot of i2/γ̇2 at φ = 0.64 and γ̇ = 2× 10−5

for ` = 0.5.

B Microstructures under shear flow
In this section, we examine how the microstructures are modulated by varying the shear rate γ̇ through investigations of the partial pair
distribution function (PDF) defined for both the same and different species as 1
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N̂SN̂L

∑
i∈S

′∑
j∈L

′
δ(r − r

(S)
i + r

(L)
j )〉, (S2)

respectively. Here, r(µ)
i represents the position of the i-th µ-species particle (µ = L, S). In Eqs. (S1) and (S2), the prime denotes

that the summantion is taken over the particles for which −0.3H ≤ y
(µ)
i ≤ 0.3H. Notice that the walls are located at y = ±0.5H.

Additionally, N̂µ is the average number of µ-species particle in the region of −0.3L ≤ y ≤ 0.3L and Â denotes the area of this region
given by Â = 0.6A.

In the upper panels of Fig. S2, we show gLL(r) at φ = 0.64 for various values of γ̇ in the shear-thinning regime, demonstrating that
a structural anisotropy becomes evident with increasing γ̇. Along the extension direction (x̂ = ŷ), the first peak of gLL(r) becomes
smaller and more broad towards the outer region with an increase in γ̇, indicating that dilution occurs. On the other hand, along the
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compression axis, almost the opposite occurs. Such behaviors are more clearly shown in the lower panels of Fig. S2, showing the
cross-sectional views of gLL(r) along the extension and compression axes. Note that essentially the same behaviors are observed for
gSS(r) and gSL(r), which are not shown here.
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Fig. S2 gLL(r) (upper) and its cross-sectional view (lower) for γ̇ = 10−6 (a), 10−5 (b), and 10−4 (c). In the lower panels the purple and dark green
lines represent gLL(r) along the extension and compression axes, respectively.

These observations in the partial PDF are supplemented by measurements of the force bond. We represent the interaction force
magnitude between the i- and j-th particles as |fij | = |∂U/∂rij | as the magnitude of the interaction forces between i- and j-th
particles. In Figs. S3(a) and (d), we display typical snapshots of patterns of the force bonds, where the pairs of particles with non-zero
interactions (|fij > 0|) are described by connecting bonds, for γ̇ = 10−6 and 10−4, respectively, at φ = 0.64. Here, the color of each
bond indicates the scaled value of |fij | by 2πsSPp, with Pp being the particle pressure defined as 1

Pp = − 1

2A
∑
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∑
j>i

rij ·
∂U

∂rij
. (S3)

For the interaction potential used in this study, as given by Eq. (1), although the potential is steep, the cutoff distance is slightly
longer than usual. Consequently, when we interpret particle pairs experiencing a non-zero interaction force as being in contact, most
particles would be nearly in a perfect contact state for sufficiently large value of φ. Nevertheless, this interpretation is oversimplified. It
is crucial to recognize that the characteristic force magnitude varies with the shear rate. As the shear rate increases, so does the driving
external force, leading to a greater characteristic force. Therefore, if the interaction force between particles is significantly smaller than
this characteristic force, these pairs can be considered ineffective in contact.

At this stage, identifying an exact threshold value for judging the interaction force as relevant for contact or not is still difficult.
Instead, by adjusting the threshold value, bonds with force magnitudes below this threshold are not displayed, and subsequently, we
assess how their overall patterns change with the shear rate. In Figs. S3 (b) and (c), at γ̇ = 10−6, we display the same snapshots
as (a) but with different threshold values. Furthermore, similar adjustments are made to (d), resulting in (e) and (f). A noticeable
difference between the cases of γ̇ = 10−6 and 10−4 is observed even for the threshold values of |fij |/(2πsPp) = 0.1, It is observed that
more bonds (mainly along the extension axis) disappear at higher shear rates: While larger forces are anisotropically exerted along the
compression axis, forces along the extension axis are weaker, indicating an effective decrease in contact (or effective opening of gaps)
along the elongation axis with an increase in the shear rate.

Before closing this section, it is noteworthy to mention the following point. Although we here scale the interaction forces by 2πsSPp,
the characteristic force magnitude may be alternatively determined by particle shear stress. Notably, a similar trend was found when
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the force is scaled by the shear stress.
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Fig. S3 Typical snapshots of the force-bonds at γ̇ = 10−6 (a)-(c) and 10−4 (d)-(f) at φ = 0.64 for various threshold values.

C Quantifying relative particle motion

(a)

(b) (c)

Fig. S4 (a) Snapshot of I1. Each circle indicates the position of a particle, the color indicates the particle size, and the arrow indicates the velocity.
Schematic pictures of I1 (b) and I2 (c). I1 and I2 measure the degree of divergent and shearing motions of the triangular element, respectively. The
blue arrows schematically illustrate typical accompanying flows of the surrounding solvent.

We explain the details of our analysis of relative particle motion. To quantify the relative motion, we define two quantities, I1 and I2,
whose physical meanings are schematically shown in Fig. S4: I1 directly measures the rate of change of the triangular area, while I2
measures the degree of shear deformation rate of the triangle. These quantities are calculated for each element. We perform Delaunay
triangulation, in which the vertices are the positions of the particles Ri. The solid lines in the left panel of Fig. S4 show the partitioning.
The quantities I1 and I2 are tied to each triangular element. In this way, we can regard I1 and I2 as spatial variables.

Here, we define the two quantities I1 and I2 as invariants of a tensor. The derivation follows the simple procedure of the conventional
finite element method (FEM) 2. We pick up a triangular element e, whose vertices are numbered as 1, 2, and 3 (see Fig. S5). We let fe

i

denote the value of an arbitrary variable f̃ at the vertex i (i = 1, 2, 3) on the element e. The vertex positions are denoted as (xe1, y
e
1),
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Fig. S5 (Left) A first-order triangular element. On each element, the approximate function f̃(x, y) is described as a plane (a). The plane function
f̃(x, y) can be expressed as a product of shape functions Ne

i (x, y) within the element and the values at the vertices fe
i (b-d).
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with
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where Ae = det(S)/2. In the linear FEM, by defining the shape function as Ne
i (x, y) = aei + beix + ceiy (i = 1, 2, 3), we express the

field variable f̃ on the element e by interpolating the values assigned to the vertices as

f̃(x, y) =
∑
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Ne
i (x)f

e
i

=
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1 (x, y) Ne
2 (x, y) Ne
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)fe

1
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2
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3

, (S7)

where x = (x, y) ∈ e.

Let (V e
xi, V

e
yi) be the velocity of the i-th particle on the element e. According to the above explained procedure, we can approximate
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the particle velocity ‘’field” at an arbitrary position x on the element e as the linear interpolation of (V e
xi, V

e
yi):

V e
x (x) =

∑
i=1,2,3

Ne
i (x)V

e
xi, (S8)

V e
y (x) =

∑
i=1,2,3
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i (x)V

e
yi. (S9)

Then, we can compute the deformation rate as(
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which further defines

Ie1 := De
xx +De

yy, (S11)

Ie2 := (De
xx −De

yy)
2 + (De

xy +De
yx)

2. (S12)

When a triangle is composed of particles of different sizes, even if the particle velocities exhibit isotropic symmetry, the associated flow
of the surrounding solvent generally does not. However, in the current studies, I1 and I2 serve as measures to quantify the degree of
volumetric and shear particle motions, respectively. It is not essential for the symmetry of particle motions to perfectly correspond with
that of the solvent motions, although they are similar due to intrinsic dynamic coupling.
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Fig. S6 SI1 (k)/k
2 against ksS/2π at φ = 0.41 (a), 0.54 (b), 0.64 (c), and 0.68 (d). At a lower k, enhancement of SI1 (k) is suppressed and behaves

as ka (a ∼ 2).

To quantify the spatial correlation of the transverse and longitudinal particle motions, we define the following structure factors:

SI1(k) =
1

A〈|Î1(k)|2〉, (S13)

SI2(k) =
1

A〈|Î2(k)|2〉, (S14)

where Îm(k) =
∑

eAeexp(−ik ·RG
e )I

e
m (m=1,2) and RG

e = (1/3)
∑

i=1,2,3 Ri is the geometrical center of the e-th triangular element.
Note that, although a window function is not used here, the resultant structure factor for k > 2 × 2π/L is hardly altered by whether
implementing it or not. In the continuum limit, it may be reduced to Îm(k) =

∫
drexp(−ik · r)w(r)Im(r). As denoted in the main

text, anisotropy and localization near the walls of the particle motions are not remarkable for the present ranges of φ and γ̇, and thus
we may safely replace SIm(k) by its angle average SIm(k).

Figures S6 and S7 display SI1(k) and SI2(k), respectively. As demonstrated in Fig. 5 in the main text, the regions with larger values
of I2 and i2 almost correspond to each other, which indicates that stronger solvent dissipation is associated with larger relative shearing
particle motion. This correspondence is further supported by Fig. S7: the spatial correlation of I2 and its intensity grow as φ increases
and γ̇ decreases. Such tendencies of SI2(k) are qualitatively similar to those of S(k), the structure factor of i2, which is shown in Fig.
4 in the main text. Unlike SI2(k), Fig. S6 shows that an enhancement of SI1(k) at the lower k is highly suppressed: as indicated in
the main text, particle density increases and decreases occur alternatively in space at several particle length scales, which may suppress
I1 at larger scales. Since the rearrangement dynamics of particles are inevitably accompanied by solvent flows surrounding them, it
is necessary to form flow channels by enhancing the particle gaps. However, the incompressibility of the solvent components tends
to prevent particle density changes. The obtained form of SI1(k) may reflect a compromise of these contradicting requirements. The
impact of incompressibility on particle rearrangement dynamics will be discussed in more detail elsewhere 3.
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Fig. S7 Structure factor SI2 (k) of I2 against ksS/2π at φ = 0.41 (a), 0.54 (b), 0.64 (c), and 0.68 (d). For larger φ, SI2 (k) at lower k grows with
decreasing γ̇. Such behaviors are qualitatively similar to those of the structure factor of i2 shown in Fig. 4 in the main text.
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