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A. Cumulative effects of spontaneous curvature induced by insertions and by area difference

Spontaneous curvature can arise from either local molecular insertions with asymmetric shapes, such as lipids or
proteins with global conical shapes, or from the difference of area between the two leaflets of the bilayer. This
difference of areas comes from the history of the bilayer, the way its was created and equilibrated (or not). In this
case, it is a non-local effect, at the origin of the Area Difference Energy (ADE) model [1, 2]. In Ref. [3], the cumulative
effects of both curvatures is investigated. It is shown (see their Eq. (18)) that the resulting spontaneous curvature
can be written as the weighted mean

C∗ =
κKB + κnlKs

κ+ κnl
(S1)

where KB and Ks are curvatures associated with asymmetric insertions and area difference, respectively, and κ and
κnl are two bending moduli. It is argued in this work that κnl ≫ κ (a ratio of 6 is proposed) so that

C∗ ≃ κ

κ+ κnl
KB +Ks (S2)

When both leaflets have the same area, as in our planar geometry CG simulations, one has Ks = 0 so that the

measured spontaneous curvature in presence of GM1 is Cplanar
Lo+GM1 = κ

κ+κnl
KB. In vesicles where leaflet areas have had

time to accommodate the spherical geometry, Ks = 2/R. We eventually get that when both effects are concomitantly

at play, C∗ = Cplanar
Lo+GM1 + 2/R. This C∗ corresponds to our Cvesicle

Lo+GM1 in the main text. In other words, the curved

species is endowed with a differential curvature Cplanar
Lo+GM1 measured in planar geometry.

B. Estimate of bending moduli κ

We follow the strategy proposed by Ref. [4] to extract the bending modulus κ from a CG simulation of a tensionless
bilayer made of a homogeneous lipid mixture. As made explicit in Eq. (12) of the main text, the membrane thermal
shape fluctuations can be related to membrane parameters through Helfrich’s model, to which a term accounting
for protrusions has been added. To measure the Fourier mode amplitudes from CG simulation, we used the PO4
beads of phospholipids to identify both leaflets and used the Mathematica interpolation function (at order 1) to
transform their positions into a continuous height function representing the membrane mid-surface, taking periodic
boundary conditions into account, before Fourier-transforming it. Fitting with Eq. (12) of the main text, we got
κLd ≃ 13.1± 0.3kBT and κLo ≃ 24± 2kBT (standard error are provided by the fitting procedure). We also found the
value σpr ≃ 0.12 J/m2 for the tension associated with protrusions, in agreement with expectations. In Figure S1, we
observe that the Lo data are more noisy than the Ld ones, even though both CG simulations were of equal duration.
This might be due to the presence of GM1 bulky heads perturbing the bilayer order. For this reason, we round the
measured value to κLo = 25kBT for the Lo phase. We also round the value to κLd = 13kBT for the Ld phase.
Now we compare these values to available experimental ones found in the literature. Indeed, many experimental

techniques can also give access to the value of the bending modulus of a homogeneous phase, notably micropipette
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FIG. S1: Spectral densities (dots) from CG 10 µs simulations of L ≈ 40 nm square patches. Ld (left) and Lo+GM1 (right)
lipid mixture bilayers were simulated and the spectra fitted with Eq. (12) of the main text (black line), from which bending
moduli are extracted. The wavevectors q are expressed in Å−1 and the vertical axis unit is (kBT )

−1.
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FIG. S2: Influence of the rigidity κLd of the Ld phase on the nanodomain size distribution for κLd = 6 (green bars), 10 (blue)
and 20kBT (yellow). Nanodomain sizes are given in number of vertices in a given Lo-phase nanodomain in the Mesoscale
model. The distribution is bimodal, however the monomer and small multimer peaks are not shown. Other parameter values
are ϕ = 0.2, κLo = 20kBT , C

vesicle
Lo+GM1 = 5/R, JI = 1/3.4 > JI,c, and σ̃ = 300.

aspiration, measurements of vesicle shape fluctuations (flicker spectroscopy), NMR, electrodeformation, low angle
diffuse X-ray scattering or neutron spin-echo. Note however that the so-obtained experimental values can appear to
depend significantly on the experimental method used [5]. For a pure DPPCmembrane explored by flicker spectroscopy
just above the transition temperature, one measures a bending modulus on the order of 10kBT [6]. The adjunction
of 30% cholesterol increases this value by a factor ∼ 2 at 44◦C [7], as measured by NMR. This is consistent with
the value κLo ≃ 25kBT found with our CG simulations, assuming that GM1 do not affect too much the Lo phase
rigidity, being a minority species. For a pure DLiPC (DIPC in MARTINI) membrane, its bending rigidity has also
been measured to be close to 10kBT by micropipette aspiration at 18◦C [8], also comparable to the value that we
measured.

Finally, we checked that the exact choice of this latter value has no strong influence on the nanodomain statistics
in the Mesoscale model because the Ld phase is assumed to have its spontaneous curvature set by the average vesicle
radius and is only weakly curved. For example, in Fig. S2, we give the nanodomain size distributions for three different
values of κLd and see little influence of this parameter value.

C. Local thickness measurements

The local thickness can be calculated via the difference of position of the corresponding box centroids in the two
leaflets, for the Ld and the Lo phase (Fig. S3). We find an average membrane thickness for all GM1 concentration of
approximately 4 nm. As expected, the Lo phase is thicker than the Ld one. This explains why the Lo phase is more
rigid than the Ld one. Indeed, in rough approximation, a membrane can be seen as an homogeneous elastic plate, the
bending modulus of which grows as the cube of its thickness h:

κ =
Eh3

12(1− ν2)
(S3)
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FIG. S3: (a) Local thickness h measured on the 15× 15 mesh (in Å), compared to the binarized membrane (b), for the same
mixture as in Fig. 5 in the main text. (c) Local thickness (in nm) evolution with time after equilibration, measured separately
for Lo and Ld phases. DPPC-DIPC-chol (30:58:12) mixture with no GM1. Here and in the following figures, the thick lines
are sliding averages of the thinner ones on a 0.2 µs sliding window.

FIG. S4: (a) Correlation between the composition fields of the 2 leaflets (registration) through time. (ab Correlation between
the composition field of the bilayer and the local thickness through time. DPPC-DIPC-chol (30:58:12) mixture with percentage
of GM1 in the upper leaflet varying from 0 (orange), to 5 (red) and to 10 (purple).

assuming the same Young modulus E and Poisson ratio ν [9]. Using the average values shown in Fig. S3 (bottom),
one finds κLo/κLd ≃ (4.35/3.6)3 ≃ 1.8 in full agreement with our measures of κLd and κLo.

D. Correlations

We measure the composition correlation between the two leaflets (registration) at a given time step following

g(ϕ0, ϕ1) =
1

N

∑
i,j

ϕ0
ijϕ

1
ij − ⟨ϕ0⟩⟨ϕ1⟩
s(ϕ0)s(ϕ1)

(S4)

with ϕ0 and ϕ1 being the binarized compositions in the upper and lower leaflet respectively, and N the number of
sites of the mesh taken into account (here 152 = 225). We normalize it by the standard deviations s so to get a value
ranging from -1 to 1. We check in Fig. S4 (left) that the leaflet compositions are indeed in register with g(ϕ0, ϕ1) ≃ 0.8.

Similarly, we compute the correlation between the local bilayer thickness h and the local composition ϕ of the
bilayer (average box composition of both leaflets) defined as

g(h, ϕ) =
1

N

∑
i,j

hijϕij − ⟨h⟩⟨ϕ⟩
s(h)s(ϕ)

(S5)

We notice in Fig. S4-b a strong correlation with g(h, ϕ) ≃ 0.9, as expected.
We further compute g(C, ϕ0) providing information about the correlation between the local curvature and the
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FIG. S5: Correlation between the composition field of the upper leaflet and the local curvature through time. DPPC-DIPC-chol
(30:58:12) mixture with percentage of GM1 in the upper leaflet varying from 0 (orange) to 10 (purple) by steps of 2.5.

composition of the upper leaflet:

g(C, ϕ0) =
1

N

∑
i,j

Cijϕ
0
ij − ⟨C⟩⟨ϕ0⟩

s(C)s(ϕ0)
(S6)

with C being the local upper leaflet curvature. We measure in Fig. S5 a high correlation which appears to be higher
in the Lo phase where GM1 are inserted. This correlation increases with GM1 fraction.

E. Using the relations between molecular and mesoscopic parameters

As an illustrative example, suppose that the Mesoscale simulations are run with an Ising parameter JI = 0.5kBT .
The line tension measured for mixtures with 10% of GM1 is λ ≃ 1.2 pN, so that a ≃ 5.6 nm owing to Eq. (11) of
the main text. One can then calculate the corresponding radius associated to the N -vertices vesicle simulated at the

mesoscale, R ≃ 75 nm (for N = 2562, see Eq. (1)). For a measured local curvature of Cplanar
Lo+GM1 ≃ 0.05 nm−1 at

10% GM1 in the outer leaflet, one gets RCplanar
Lo+GM1 ≃ 3.8 and thus RCvesicle

Lo+GM1 ≃ 5.8 as input value for the Lo-phase
dimensionless spontaneous curvature in the Mesoscale simulations.

Conversely one could start from the value of the dimensionless RCvesicle
Lo+GM1 used in Mesoscale simulations and infer

the ensuing real-unit curvature Cplanar
Lo+GM1 and thus the GM1 concentration required to have this value of RCvesicle

Lo+GM1
in the Mesoscale model.

F. Relaxation times of boundary fluctuation modes

Relaxation times of the boundary fluctuations are defined as follows. We consider a quasi-circular domain of
average radius R0, the boundary of which fluctuates under thermal agitation. The wavelength associated with the
Fourier mode n is Λn = 2πR0/n. If the domain radius in polar coordinates is r(θ, t) = R0[1 + u(θ, t)], we denote
by un the amplitude of mode n. It is a Gaussian random variable of zero mean [10]. Its auto-correlation function is
defined as Cn(s) = ⟨un(t)un(t+ s)⟩, averaged over realization or over a long trajectory. As discussed for example in
Ref. [11], Cn(s) decays exponentially with s, with a characteristic timescale τn, also denoted by τ(Λn), that we call
the relaxation time of mode n in the present work.
Refs. [11] and [12] have discussed in detail the expected dependence of τ on n in the MD context. Hydrodynamic

interactions play a key role because forces locally applied on the domain boundary by the line tension are propagated
on the whole boundary by hydrodynamic flows. In the frame of the Saffman-Delbruck theory, a typical lengthscale
plays an important role, the so-called Saffman-Delbruck length LSD = hηm/(2ηf ). Here LSD, ηm and ηf are the
viscosities of the membrane and the fluid, respectively, and h is the membrane thickness. In real lipid membranes LSD

falls typically between 100 nm and 10 µm. Depending on the ratio between LSD and Λn, τ scales differently with Λn.
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n 2 3 4

τn (µs) 0.67 0.175 0.125

TABLE I: Relaxation times of domain-boundary fluctuation modes for the MD simulations of the DPPC-DIPC-chol (30:58:12)
mixture.

On lengh-scales Λn ≪ LSD, 2D hydrodynamics inside the membrane dominates and the solvent friction can be
neglected, so that

τn ≃ 4hηm
λ

R0

n
∝ Λn. (S7)

where λ still denotes the line tension at the domain boundary. Note that in this case, if the viscosity of the Lo and
Ld phases differ, it can be proven that the value of hηm entering Eq. (S7) is in fact the mean hηm = (hLoηLo +
hLdηLd)/2 [11]. To our knowledge, the viscosity of DLiPC bilayers has not been measured experimentally so far.
However, we reasonably assume that Ld phase is much less viscous than the Lo one, so that hηm ≃ hLoηLo/2.
Literature where viscosities of lipid mixtures are measured are relatively sparse. Owing to the latter relation, we
can extract reliable values of hηm from experiments on lipid mixtures where the Lo phase is comparable to ours, at
comparable temperature. In Ref. [13], a 1:2 DOPC (C18:1 dioleoyl PC)/DPPC + 30% Chol, i.e. 51:25:23 DPPC-
DOPC-Chol is studied, with a Lo phase comparable to ours. A value of hηm ≃ 4 × 10−10 Pa.m.s is found at about
305 K. We use this value in the main text. In addition, ηf = 0.69 mPa.s for water at 310 K, hence LSD ≃ 300 nm,
larger than the MD system size. Note that the measured values of membrane viscosities somewhat depends on the
experimental technique, so this value is only indicative.

On lengh-scales Λn ≫ LSD, 3D hydrodynamics in the surrounding solvent would dominate, and

τn ≃ 2πηf
λ

R2
0

n2
∝ Λ2. (S8)

In the intermediate regime where Λ and LSD are comparable, a more complex integral relation has also been de-
rived [11].

To measure relaxation times in MD simulations, we use the same discretized dartboard as described in the main
text Methods to get the discrete values of u(θ, t). We then make use of a combination of Fast Fourier Transform
(FFT) and Wiener-Khintchine’s theorem to compute Cn(s), and we finally extract τn by fitting ln[Cn(s)] with an
affine function.

In Table I, we give the relaxation times measured this way (in absence of GM1). The slowest mode is on the µs time-
scale for a 12 µs run (after 8 µs of equilibration), thus sampling of this mode is relatively poor and the uncertainty on
τ2 is expected to be relatively important. We nevertheless can fit the measured values with a power-law, and we find
that τ ∝ 1/n2.5 ∝ Λ2.5. In spite of the uncertainties, this suggests that the system size is above the Saffman-Delbruck
length LSD where τ ∝ Λ2, whereas we would have expected that Λ ≪ LSD with known experimental viscosities. This
apparent discrepancy either comes from insufficient sampling or from a smaller CG bilayer viscosity. Indeed, it is
known to be smaller than the real one by several orders of magnitude [14, 15], which significantly lowers the value
of LSD in CG simulations using the MARTINI force field. If timescales are to be directly extracted from simulations
rather than experiments, one must take great care of this delicate issue.

G. Determination of transverse deformation modes timescales

Here we address the question of the transverse fluctuation timescale in the Mesoscale model. A well established
theory [1, 16] provides the membrane friction constant per membrane unit area at wavevector q = 2π/Λ,

ζ⊥ = 4ηfq =
8πηf
Λ

(S9)

We are again interested in vertex dynamics at the shortest wavelength Λ = 2a. Owing to Einstein’s relation, the
radial diffusion coefficient of an elementary membrane patch of area A0 = 4πR2/N ∼ a2 is thus D⊥ = kBT/(ζ⊥A0).
In our Mesoscale simulations, radial MC moves are attempted with a spatial step δr = ρR (with ρ = 0.007 in most of
our runs). Thus the physical timescale associated with (one-dimensional) radial MC moves is

δt⊥ =
δr2

2D⊥
=

2πηfδr
2A0

kBTa
(S10)
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If R = 30 nm and N = 2562, we obtain δt⊥ = 90 ps. Compared to the time-scale δt associated with vertex-composition
flips above, it is much shorter (see main text).

H. Backmapping from the Mesoscale model to the CG one

In complement of Fig. 12 in the main text, Fig. S6 illustrates that the fraction of Lo triangles remains stable during
the CG-MD simulation, very close to the initial 20% fraction before backmapping.
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FIG. S6: Evolution with time of the fraction of Lo triangles (full line) and expected value of 20% (dashed line).

In addition, we measured the acyl-chain order parameter [17]

P =
1

2

(
3⟨cos2(θ)⟩ − 1

)
(S11)

where θ is the angle between bond vectors between the lipid CG beads and the local bilayer normal (Figure S7-c,
inset). It is commonly used to characterize chain ordering in the different lipid phases.

Due to the curvature induced by the GM1 lipids, we needed to modify the conventional way of measuring order
parameters by considering the true local vector orthogonal to the membrane surface, rather than solely relying on
the z vector commonly used as an approximation for the membrane normal vector. While this approximation holds
true for simulations of almost planar membrane such as the beginning of our simulation (see Figure S7-a), it becomes
inadequate towards the end of the simulation (see Figure S7-b). In brief, our script segments the membrane system
into patches, calculates the local normal of each membrane patch, and computes the average order parameter for each
lipid bond with respect to this local normal vector. On the vesicle (see Figure S7-e), the patches have variable sizes
because of the inherent difficulty to divide a sphere in equal patches. This analysis specifically focuses on the upper
leaflet, where GM1 is incorporated.

As expected, the order parameter of unsaturated DIPC lipids, concentrated in the Ld phase, rapidly drops for
the extremities of the lipid located deeper into the bilayer, while saturated DPPC lipids, concentrated in the Lo
phase, display acyl chain extremities more ordered in the bilayer core with an higher order parameter. Notably, the
order parameter for DPPC exhibits a slight initial increase during the first 5 µs of simulations in the planar system
(Figures S7-c and d), indicating a transient equilibration phase, while it remains relatively stable in the case of the
vesicle (Figures S7-f and g), as this lipid is consistently maintained in a liquid-ordered phase. The order parameter
values are not significantly different in the planar and vesicular systems. Further analyses will be necessary to further
elaborate on these findings, especially by varying the temperature to observe the evolution of the order parameter, as
previously conducted [17].
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FIG. S7: Acyl chain order parameter P of 15% GM1 systems. (a, b) Visualization of the normal vectors (in green) to the
15% GM1 bilayer (a) at t=0 and (b) at t=20 µs used to calculate the order parameter for curved membranes. (c) Order
parameter for DPPC and DIPC lipids extracted from the 15% GM1 planar system (upper leaflet). Inset: the different bonds,
the orientation of which is measured with respect to the normal vector, in green. (d) Order parameter for DPPC C1-C2 bond
during the course of the 20 µs simulation. (e) Vesicle system containing 15% of GM1 after backmapping from the mesoscale
model and the normal vectors in green. (f) Order parameter for DPPC and DIPC lipids extracted from the 15% GM1 vesicle
system. (g) Order parameter for DPPC C1-C2 bond during the course of the 10 µs simulation.
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