
S1. Governing equations of nonlinear simulations
In this section, we describe the dimensional governing equations for the elasto-hydrodynamics of an active
filament in a viscous fluid with a prescribed viscosity gradient.

The flexible filament is modelled as an elastic rod using the classical Kirchhoff theory. Its internal elastic
force at a given arc-length s̃, defined as f̃e = τ̃t+ Ñn, denotes the contact force applied from the downstream
part of the rod (s′ > s̃) onto the upstream segment (s′ < s̃). The internal bending moment m̃e is determined
in the same way, capturing the moment of contact forces exerted from the downstream side to the upstream
side. For a slender planar rod, the internal bending moment is m̃e = Aθs̃ez, where A is the bending modulus and
ez = ex × ey.

The torque balance for the differential element ds̃ located between s̃ and s̃+ds̃ is expressed as:

−m̃e(s̃)+ m̃e(s̃+ds̃)+(tds̃)× f̃e(s̃) = 0, (S.1)

leading to Ñ =−Aθs̃s̃. Balancing the force on the same element ds̃ gives:

−f̃e(s̃)+ f̃e(s̃+ds̃)+ f̃hds̃− f t(s̃)ds̃ = 0. (S.2)

By substituting the expression for the hydrodynamic force density f̃h (equation 2 in the main article), the normal
and tangential components of Eq. (S.2) can be obtained as:

ξ̃⊥n · ∂ r̃
∂ t̃

= τ̃θs̃ −Aθs̃s̃s̃, (S.3a)

ξ̃∥t · ∂ r̃
∂ t̃

= τ̃s̃ +Aθs̃θs̃s̃ − f . (S.3b)

Differentiating the above equations with respect to s̃ and using the inextensibility condition ∂ r̃s̃
∂ t̃ · t = 0, we derive

ξ̃⊥
∂θ

∂ t̃
+Aθs̃s̃s̃s̃ − (τ̃θs̃)s̃ −

ξ̃⊥
ξ̃∥

θs̃(τ̃s̃ +Aθs̃θs̃s̃ − f )+
∂ ξ̃⊥
ξ̃⊥∂ s̃

(τ̃θs̃ −Aθs̃s̃s̃) = 0, (S.4a)

τ̃s̃s̃ +(Aθs̃θs̃s̃)s̃ −
ξ̃∥
ξ̃⊥

θs̃(τ̃θs̃ −Aθs̃s̃s̃)−
∂ ξ̃∥
ξ̃∥∂ s̃

(τ̃s̃ +Aθs̃θs̃s̃ − f ) = 0. (S.4b)

Evidently, the filament behaviour is influenced by the viscosity gradient through spatial variations in the drag
coefficients ξ̃⊥ and ξ̃∥.

At the clamped base s̃ = 0, θ(s̃ = 0, t̃) = 0 and ∂ r̃
∂ t̃ = 0 are imposed. From equations (S.3a) and (S.3b), we

obtain the following boundary conditions (BCs):

s̃ = 0 : τ̃θs̃ −Aθs̃s̃s̃ = τ̃s̃ +Aθs̃θs̃s̃ − f =
∂θ

∂ t̃
= 0. (S.5)

The free end of filament at s̃ = L experiences zero force and torque, leading to

s̃ = L : τ̃ = Aθs̃ = Aθs̃s̃ = 0. (S.6)

S2. Numerical methods
This section outlines the numerical method employed to solve the dimensionless governing equations (3) along
with the corresponding BCs (6) and (7) in the main text.

We utilise the Chebyshev series to discretise the filament centerline1,2. The differentiation operator, denoted
as Dp, is defined as Dp(·) = ∂ p(·)/∂ sp, where p = 1, . . . ,4. For time discretization, a variant of implicit-explicit
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scheme2,3 is employed. The coupling of τ and θ involves treating the higher-order spatial derivatives in nonlin-
ear terms implicitly, while the other variables are treated explicitly. After using the backward Euler scheme for
the first step, we apply an implicit-explicit scheme to solve for the (n+1)-th step of [τ,θ ]:

3θ n+1 −4θ n +θ n−1

2∆t
+
[
D4 − τ̂D2 −2(D1θ̂)2D2 +2σD1

]
θ

n+1 −3D1θ̂D1τ
n+1 + Ĝ(τ̂D1 −D3)θ

n+1 = 0, (S.7a)[
D2 −

1
2
(D1θ̂)2

]
τ

n+1 +

(
D2θ̂D2 +D1θ̂D3 +

1
2

D1θ̂D3

)
θ

n+1 − Ĝ
(
D1τ

n+1 +D1θ̂D2θ
n+1 −σ

)
= 0, (S.7b)

where ∆t represents the time step, and the hat ˆ(·) denotes the predicted unknowns at the next time step,
approximated as ˆ(·) = 2(·)n − (·)n−1.

We use 51 Chebyshev points to discretize the filament, and the time step is fixed at ∆t = 10−5. The initial
condition for θ is set to be 10−3 sin(s), introducing a minor perturbation to initiate the potential instability.
Simultaneously, the initial tension τ is assigned to the base state τ(0) = σ(s−1).

S3. The configuration of a point follower force
In the main article, we have focused on an elastic filament driven by a uniformly distributed follower force
density along its centerline. In this section, we present the governing equation and results for another setting
of active forcing: the filament is actuated by a point follower force F (dimensional) at the free tip as in Refs.4,5.

The dimensionless governing equation can be obtained by adjusting that (equation 3 in the main article)
for the distributed forcing. Namely, we set the dimensionless active force density σ = f L3/A (for the setting of
distributed forcing) to be zero in that equation, obtaining

∂θ

∂ t
+θssss − (τθs)s −2θs(τs +θsθss)+G(τθs −θsss) = 0, (S.8a)

τss +(θsθss)s −
1
2

θs(τθs −θsss)−G(τs +θsθss) = 0. (S.8b)

Besides, the dimensionless point force is defined as

σ =
FL2

A
. (S.9)

It is noted that for the settings of distributed and point forcing, we adopt the same notation σ to indicate the
strength of active forcing relative to elastic force. Incorporating this definition of dimensionless point force, we
write the BCs:

s = 0 : τθs −θsss = τs +θsθss =
∂θ

∂ t
= 0, (S.10a)

s = 1 : τ =−σ , θs = θss = 0. (S.10b)

The linearised governing equations are obtained following a similar approach as in the main article. The base
state is characterised by θ (0)= 0 and τ(0)=−σ . Consequently, the governing equation for θ (1) and corresponding
BCs read:

∂θ (1)

∂ t
+θ

(1)
ssss +σθ

(1)
ss +G(0)

(
−σθ

(1)
s −θ

(1)
sss

)
= 0, (S.11a)

s = 0 : σθ
(1)
s +θ

(1)
sss =

∂θ (1)

∂ t
= 0, (S.11b)

s = 1 : θ
(1)
s = θ

(1)
ss = 0. (S.11c)

In Fig. (S1)a, the real and imaginary parts of the most unstable eigenvalues, obtained from both LSA and
numerical simulations, are depicted. These values vary with the active forcing σ and the vertical viscosity
gradient γ. Fig. (S1)b illustrates that both the instability threshold σc and the corresponding frequency at the
onset of instability consistently decrease with γ. These trends mirror those observed in the case of distributed
active force density (see Fig. 3 in the main article).
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Fig. S1 Comparison between LSA (lines) and simulations (symbols) for a filament driven by a point follower force of dimensionless
strength σ . (a) Real and imaginary parts of the most unstable eigenvalues as a function of σ for different γ. The vertical dashed
lines indicate the critical value of σ leading to instability. (b) The critical value σc and oscillation frequency as a function of γ.

S4. Instability of a filament subject to a horizontal viscosity gradient
In Fig. (S2), we present the growth rate and frequency of the most unstable eigenmodes for a filament subjected
to a constant force density. These results are derived from both LSA and numerical simulations. As elucidated in
the main article, our findings suggest that the influence of horizontally varying viscosity on filament instability
is minimal. This observation remains valid in scenarios involving a point follower force (not shown here).
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1Fig. S2 Instability of a filament driven by a distributed active force density σ under a horizontal viscosity gradient γ. Real and
imaginary parts of the most unstable eigenvalues versus σ at different γ.
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