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1 Further Experimental Data

1.1 Features of stored deformation

Fig. 1 shows images of a sponge of elasticity E ∼ 7MPa. We show response
in the elastic and pseudo-plastic state in Fig. 1(a) and (b) respectively. (a)
shows no deformation Id is stored whereas, on indentation to Ic, as shown in
Fig. 1 (b)(ii) and the indentation up to a depth Id is permanently stored as
shown in (b)(iii). Fig. 1(c) shows that small indentation with various inden-
tors can be created on the surface in distinct shapes, which can be thought
of as writing multiple bits in parallel and close to each other. Also, as we
discussed in the main text that the deformation in the pseudo-plastic state
is highly localised, a demonstration of this can be seen in Fig. 1(d). A small
hexagonal unit of a few rods is colored blue as shown in (d) (i). It is then
indented by a small indentor of diameter 2mm and the state of the colored
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unit of rods after indentation is shown in (d)(ii). In our experiments, we
also observed that applying strain by compressing on both orthogonal axes
perpendicular to the direction of vertical indentation leads to even better re-
tention of the deformed shape. However, most features discussed are present
in the case of uniaxial strain. So, we have focused only on the case of uniaxial
strain in our experiments.

Figure 1: (a)(i) shows the indented elastic state of sponge and (ii) shows that
on removal of indenatation, a regular grid printed on the undeformed sponge
comes back to it’s original state. (b)(i)-(iii) show the sponge in pseudo-plastic
state before, during and after indentation respectively. (c) shows various
shapes that can be indented via differently shaped indentors. (d) (i)-(ii) show
the behaviour of a small blue colored region (circled red) in the pseudo-plastic
state before and after indentation as seen with a 10x microscope.

1.2 Reproducible Fluctuations in Find

In our experiments, we also observed that applying strain by compressing on
both orthogonal axes perpendicular to the direction of vertical indentation
leads to even better retention of the deformed shape. We discuss the fluctua-
tions in the measured value of Find here. It was found that small fluctuations
in the value of Find are repeatable in multiple experiments of indentation,
when performed at the same location. This reproducibility is demonstrated
in Fig. 2. This can be attributed to re-formation of the complex buckled
microstructure of the rods. This therefore substantiates the claims of the
complete erasure of previously stored deformation on setting γ = 0.
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Figure 2: (a) shows only the forward part of indentation cycle for indenta-
tion to various depths following protocol P2. (b) shows F − Favg,T for the
indentation force.

1.3 Sponge properties and characterization

Cellular materials have a vast literature discussed in introduction of the main
text. These can be broadly classified as open-cell or close cell foams or
sponges. The cellular materials discussed in this paper are of open-cell type,
i.e., made of rods, while closed-cell sponges are made of walls rather than
rods. These materials demonstrate interesting negative Poisson’s ratio as
demonstrated in Fig.3 (a). Considering h(x) = 0 to be the initial profile of
the surface where x varies from 0 to L (L being the distance between the
compression plates). It goes to a slightly u-shape with h(x) < 0 for finite
strains. This is typical behaviour known in literature for cellular materi-
als. The rods at the surface are buckled in random orientations and on a
coarse scale, the surface is smooth, even though there are minor wrinkles or
fluctuations due to buckling of surface rods.

Since these polymeric materials are viscoelastic, there is a time rate at
which applied forces decay as seen in Fig.3(b). We see that if compressed
at a high strain rate, Find will relax in time, with a very short timescale.
Whereas, at low enough strain rates, relaxation time will be very long, and
force relaxation will be negligible. From Fig. 3(c), we find that τ ∼ 10s, 100s,
i.e., there is a shorter relaxation timescale of 10 seconds and a longer relax-
ation timescale of 100 seconds. For the slow indentation rates that we use in
our experiments, the faster timescale doesn’t play a role but the effect of the
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(a) Figure shows that height after
compression decreases, implying neg-
ative Poisson’s ratio.

(b) Figure shows the variation of
response of sponge in the pseudo-
plastic state under fast indentation
with time. There are multiple relax-
ation timescales τ ∼ 10s, 100s here.

Figure 3: Sponge Properties

longer relaxation timescale τ ∼ 100s gives slight viscoelasticity to the elastic
phase.

1.4 Variation of Id vs γ

As we vary the strain γ, we observe maximum Id that can be stored for the
same value of Ic to increase. Results are shown in Fig. 4.

1.5 Variation of indentor

We obtained same results of deformation storage with a different indentor.
Fig. 5(a) (i-iv) show the post indentation images with deformation Id stored
in a sponge material compressed between two plates for increasing values
of indentation Ic. (b) shows that the indentor is threaded in this case, in
contrast to the indentor shown in Fig. 4 of the main text which has a smooth
surface.
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Figure 4: (a) shows the buckled surface under strain in (ii) as compared
to the flat surface in (i) without strain. (b) (i)-(iv) show an image after
indentation for increasing values of γ representing an increase in Id, which is
the maximum deformation that can be stored, for the same value of Ic.

Figure 5: (a) shows deformation Id stored for increasing values of Ic. (b)
shows the threaded indentor.
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2 Theoretical Analysis of a single hyper-elastic

rod

Here, we discuss the behaviour of a single hyperelastic rod under external
force. A single rod will undergo Euler buckling at critical load n2π2EI/L2

under normal forces, and at a critical strain ϵc as labelled in Fig. 6(a).

Figure 6: (a) shows the F v/s ϵ curve expected for buckling of a single rod.
(b) shows the 3 orthonormal vectors (Serret-Frenet triad) along the length
of a single rod parametrized by s

Fig. 6 (b) shows the undeformed configuration of a 3D rod parameterised
by arclength s (s varies from 0 to ℓ) along the center of the rod on the ‘cen-
terline’ in Euclidean R3 space. At every point s on the rod, we can associate
three orthonormal vectors d⃗1, d⃗2 and d⃗3 which stand for Tangent, Normal and
Binormal. Together these are also known as the Serret-Frenet triad. In the
deformed condition of the rod shown with the solid line in Fig. 6 (b), the
vectors will continue to be orthonormal if we ignore the shearing of the rod
(which holds for for thin rods). For uniform deformation, we can account for
the stretching, bending and twisting of these rods via the derivatives of the
vectors d⃗1, d⃗2 and d⃗3 along the parameter s. For orthonormal vectors, the
derivatives can be broken down to three scalar functions κ(1)(s), κ(2)(s) and
τ(s) [1]. Here κ(1), κ(2) and τ are interpreted as the local rates of rotation of
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the Serret-Frenet triad. κ(1) and κ(2) represent curvature due to bending of
the rod along the plane orthonormal to the tangent vector, and tau refers to
the twisting of the rod, around the tangent vector. Also, here

∫
ds = ℓ+ dℓ,

and u = dℓ/ℓ is the uniform strain in the rod. The energy per unit length
for the rod in terms of curvature, twist and strain can be written as

ϵrod
ℓ

=

∫
ds

EI

2
κ(1)(s)

2
+

∫
ds

EI

2
κ(2)(s)

2
+

∫
ds

βJ

2
τ(s)2 +

Eπr2

2
u2 (1)

Here, I = πr4/4 and J = πr4

2
are moments of bending and twist and β

is the mass per unit length. We find that elastic energy and bending energy
scale as r4 whereas stretching energy scales as r2. This implies that for thin
rods, stretching is much more costly, and the stretching restoration forces
are much higher than bending restoration forces. Resistance to bending
can be thought of as being provided by a spring constant kt and resistance
to stretching is provided by a spring constant kℓ[2]. The buckling and the
stretching spring constants are related by kt/kℓ = (r/ℓ)2 which points to an
arguement for inextensibility in the rod and a treatment of an individual rod
similar to elastica.

3 Simulation

We simulated the behaviour with a visco-elastic model called the Kelvin-
Voigt model which has a spring and a dashpot in parallel [3]. As the indentor
indents the material, more and more material starts interacting with the
indentor as shown in Fig. 3 in the main text. We incorporated this behaviour
into the behaviour of the spring constant k.

In the forward cycle, the stress-strain curve, or the findvsx curve is given
by the following relation:

find = kintx+ ηẋ (2)

On removal of applied stress, the visco-elastic material relaxes it’s strain
over a timescale τeff ∼ η/keff . Therefore x = xce

−t/τeff . The instantaneous
force on an indentor experienced by such a relaxation can be given by the
same equation 2. In the compressed phase, k will increase linearly with γ as
evident from Fig. 2(f) of the main text. In the presence of a frictional force,
ffric, the force balance equation can be written as:
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find = kintx+ ηẋ+ ffric (3)

Friction is a highly non-linear force, and it can take any value while
resisting motion along contacts, varying from 0 to a maximum value[4]. In
our simulation, we set the direction of ffric to be opposite of ẋ. Moreover,
keff and ffric depend on I2 as shown in Fig. 3 of the main text. We have
therefore set keff ∝ x2 and ffric ∝ x2 in our simulation code. This will result
in an equilibrium xd such that keffxd ≈ ffric. Deformation will be encoded
when τeff → ∞ which happens when keffxd ≈ ffric. Codes can be found on
[5].
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