Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2024

> Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

Biocatalytic PEI-PSS membranes through aqueous phase separation:

influence of casting solution pH and operational temperature

Lijie Li,^{a,b} Muhammad Irshad Baig,^b Wiebe M. de Vos^b and Saskia Lindhoud*^a

^{a.}Faculty of Science and Technology, Department of Molecules & Materials, MESA+ Institute for Nanotechnology, University of Twente, Enschede 7500 AE, The Netherlands. ^{b.}Department of Membrane Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, Enschede 7500 AE, The Netherlands.

Fig. S1 Photographs of the prepared membranes without lysozyme (a) M-pH_{11.4}, (b) M-pH_{10.9}, (c) M-pH_{10.5}, and with lysozyme (d) M-L-pH_{11.4}, (e) M-L-pH_{10.9}, (f) M-L-pH_{10.5}.

Fig. S2 Cross-section SEM images of the PEI-PSS membranes without lysozyme (a) M-pH_{11.4}, (b) M-pH_{10.9}, (c) M-pH_{10.5}, and with lysozyme (d) M-L-pH_{11.4}, (e) M-L-pH_{10.9}, (f) M-L-pH_{10.5}.

Fig. S3 The full cross-section SEM images of the PEI-PSS membranes without lysozyme (a) M-pH_{11.4}, (b) M-pH_{10.9}, (c) M-pH_{10.5}, and with lysozyme (d) M-L-pH_{11.4}, (e) M-L-pH_{10.9}, (f) M-L-pH_{10.5}.

Porosity calculation

The porosity (ϵ) of the membrane is calculated using the Equation S1:

$$\varepsilon(\%) = \frac{v_{pore}}{v_{total}} * 100 = \left(1 - \frac{v_{pure}}{v_{total}}\right) * 100 = \left(1 - \frac{m_{pure}/\rho_{pure}}{s*h}\right) * 100$$

Where m_{pure} and ρ_{pure} is the dry weight and density (1.1 g·cm⁻³) of the pure dry membrane without pores. Here we assume that the density of the pure membrane is similar with the polyelectrolyte complexes.¹ s and h are the surface area and thickness (measured from SEM images in Fig.S3) of the dry membrane.

Membranes	M-pH _{11.4}	M-pH _{10.9}	M-pH _{10.5}	M-L-pH _{11.4}	M-L-pH _{10.9}	M-L-pH _{10.5}
Porosity (%)	81.4	78.7	67.1	81.8	77.1	66.0

Table S1. Porosity of the membranes prepared with different pH casting solution.

Fig. S4 Absorbance at 450 nm of 2.5 mL substrate suspension with 100 μ L free lysozyme solution (5 mg·L⁻¹) and 100 μ L PBS buffer (blank sample) measured at different temperatures.

Fig. S5 Absorbance at 450 nm of the substrate suspension after the biocatalytic membranes (a) $M-L-pH_{11.4}$, (b) $M-L-pH_{10.9}$, and (c) $M-L-pH_{10.5}$ were treated in the suspension for 1 hour at different temperatures. All values are shown as averages of three samples, and the error bar represents the standard deviation.

Fig. S6 Enzymatic activity of the biocatalytic membranes (a) $M-L-pH_{11.4}$, (b) $M-L-pH_{10.9}$, and (c) $M-L-pH_{10.5}$ after being treated in substrate for 1 hour at different temperatures, and then put in new 0.15 mg·mL⁻¹ substrate suspension.

Fig. S7 Absorbance at 281.5 nm of the supernatant water of the PEI-PSS membranes without and with lysozyme stored in water for 7 days.

Membranes	PAH-PSS	M-L-pH _{11.4}	M-L-pH _{10.9}	M-L-pH _{10.5}
Casting solution pH	pH~13	pH~11.4	pH~10.9	pH~10.5
Coagulation bath pH	pH~1	pH~4	pH~4	pH~4
Water permeability (L·m ⁻² ·h ⁻¹ ·bar ⁻¹)	12±2	3.6±0.2	50±16	452±83
Lysozyme loading (µg∙cm ⁻²)	4.49±0.41	~7.5	~7.5	~7.5
Highest activity (U·cm ⁻²)	2.47±0.49	4.29±0.15	3.80±0.17	2.35±0.30
7 days activity (U·cm ⁻²)	1.23±0.47	3.25±0.12	4.31±0.03	2.64±0.09
7 days stability	50.2%	75.8%	100%	100%
60 days activity (U·cm ⁻²)	١	1.85±0.07	2.67±0.07	1.57±0.04
60 days stability	١	43%	62%	59%

Table S2. Overview comparation between the biocatalytic PEI-PSS and PAH-PSSmembranes.

Reference

1. R. Köhler, I. Dönch, P. Ott, A. Laschewsky, A. Fery and R. Krastev, *Langmuir*, 2009, **25**, 11576-11585.