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Computationally-Quantified Morphology: A Detailed Overview 

Image Processing. The microscopy data is deconvolved using NIS-Elements’ automatic algorithm and 
exported to Fiji for processing. We blur the Z-stacks using a 3D gaussian filter then binarize the images via 
thresholding at value t, skeletonize the 3D dataset using Fiji’s built-in algorithm, and export the result to a 
.tiff stack.1 We manually adjust the binarization threshold t for stack of images sample to balance the 
visibility of the dimmest ribbons with the oversaturation of bright, proximal segments (Fig 3a-c). 

Coding Overview. We use a proprietary MATLAB algorithm to evaluate the morphology of our ribbon 
arrays. The objective of the code is to first determine the position of individual ribbons in 3D space from 
the confocal data, and then use the estimated ribbon positions to extract key metrics from the data, such 
as the radius of curvature, the inter-ribbon separation, and the distribution of mass density relative to the 
substrate surface. Due to the wide variety of ribbon architectures exhibited across experiments, this 
strategy allows for a quantitative approach to compare visually distinct morphologies. This code uses 
strategies from 2–7 to guide its design.  

Skeletonization and Segmentation. The code takes in the skeletonized .tiff stack and locates the individual 
(x,y,z) coordinates of each skeleton voxel (Figure S3a), with each voxel having dimensions of 1 px x 1 px x 
1 z-step. Each voxel is classified as an end point, a junction, or a backbone based on the number of pixels 
in its neighborhood2 and neighboring backbones are connected to create segments terminated at either 
end points or junctions (Figure S3b)2,3. 

Bridging Junctions. The algorithm groups proximal junctions and then identifies the segments that connect 
to each. To bridge the junctions, we must first describe the direction of each segment’s approach. 
However, because the ribbons can follow relatively tortuous paths, we must first subdivide each ribbon 
segment into smaller components. In this way, we isolate the region of each segment closest to the 
junction. 

To do this, we define the tortuosity of a ribbon as the difference in the distance between the ribbon’s end-
to-end distance and its total length. Starting at one end, we trace the segment point-by-point, and once 
the tortuosity exceeds an empirically-defined threshold, we terminate the growing subsegment and begin 
a new one.2 In this way, segments with low curvature are broken into fewer regions of more voxels, and 
high curvature segments are described by a greater number of subsegments, each containing fewer voxels. 

This process leaves us with a list of skeleton subsegments, each described as an n x 3 matrix, with each 
row containing the x, y, and z, coordinates of a voxel. We consider each of these voxels to have equal 
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mass. Using the cov function, we compute the gyration tensor of each individual subsegment. The largest 
principal eigendirection of that gyration tensor is the directionality of the subsegment (Figure S3c). 

We calculate the principal eigendirection of each subsegment immediately bordering the junction and 
determine all possible dot products between them (Figure S3d). We draw the initial pathways between 
segments that are the most parallel and should therefore exhibit the largest dot product. The algorithm 
makes these connections while searching for and ignoring spurious segments– artifacts of the 
skeletonization process2,6 – based on the following criteria: 

(a) The segment approaches an odd-numbered intersection at an angle perpendicular to all other 
segments 

(b) The segment shares significant (>80%) overlap with another segment in x and y, with a slight (<10 
z-step) z-offset. 

(c) The segment exhibits improbable straightness, with tortuosity (
𝐿𝑝𝑎𝑡ℎ

𝐿𝑒−𝑒
) approaching 1. 

Buildup and Evaluation. Once the initial connections (Figure 3e) are made, the algorithm then begins 
building up connections between segments can be made based on two criteria: 

(a) The end points of two segments are within a maximum distance (5 voxels) of one another. In the 
event that multiple end points meet this criterion, the connection is made to between the 
segments whose approach is most parallel. 

(b) The segments’ ends exhibit direct overlap. 

The quality of the resulting guess is then evaluated, making the following assumptions about each ribbon: 

(a) A ribbon can only have two end points, and therefore cannot branch.  
(b) A ribbon is continuous, and therefore cannot have any gaps along its backbone. 
(c) A ribbon follows a unique path, and therefore should not have significant overlap with other 

segments. 
(d) Each ribbon is tethered to a substrate at only one end. 

If a ribbon fails to pass these criteria, it is broken up based on the criteria that it failed and re-evaluated as 
separate segments. Ribbons that share >90% of their points with another segment are combined into a 
single segment. Furthermore, if >20% of a ribbon’s points intersect with others, the entire tangle is re-
evaluated to determine the most probable path for each ribbon. In this instance, all possible combinations 
of paths between end points are evaluated to minimize: 

(a) The number of points excluded from the buildup 
(b) The average number of overlapping points between each of the pathways 
(c) The average tortuosity of each proposed pathway 
(d) The average difference in path lengths 

Buildup and evaluation steps are iterated to generate a final estimate (Figure 3g). All segments containing 
less than 30 points are excluded from consideration. The remaining ribbons are smoothed using MATLAB’s 
rloess method due to the method’s tolerance of outliers in the data. The window used to smooth these 
curves is proportional to the size of the segment, and then all (x,y,z) coordinates are translated into 
micron-based positions based on the micron-to-pixel ratio and the size of the z-step. Z-values are 
corrected to align the lowest z-values with a height of zero. 

The algorithm then identifies and removes the portions of ribbons located along the laser cutting line. 
These ribbons are adhered to the substrate and therefore will not exhibit morphological changes as the 



environment changes. The algorithm considers all ribbons that are within 20 μm from the slide and less 
than 200 μm in length, and then it identifies the average location of these ribbons along the y-axis. The 
laser cutting line to which the ribbons are tethered runs perpendicular to the y-axis, and therefore the 
ribbon fragments located along the center line should exhibit a similar range in y-values. The algorithm 
considers the most frequent range in y-values to be the location of the center axis. The code then removes 
all points within 20 μm of the substrate that fall within this y-range. This removes the substrate-bound 
portion of the ribbon from future consideration. 

Quantitative Metrics. We quantify the ribbon position using the following metrics: 

(a) Curvature: determined using the first and second derivatives of the ribbon’s coordinates. 
Assuming the (x,y,z) coordinates of a ribbon trace a path F(t), with a step size of dt = 1, then the 
curvature κ can be approximated: 

(Eq. S1) 𝜅 =
||𝐹′(𝑡)×𝐹′′(𝑡)||

||𝐹′(𝑡)||
2  

(b) Radius of curvature: the inverse of the curvature. 
(c) Straightness: All radius of curvature values greater than the targeted length of the ribbon (1000 

μm) are ignored, and the ribbon is considered to be perfectly straight in these regions. The total 
number of straight points along the ribbon backbone normalized by the number of points along 
the ribbon length is calculated as a measured of ribbon straightness. 

(d) Lateral mass distribution: The center axis of the laser cutting line is defined by the central line of 
the excluded region along the laser cut. The average y distance between each ribbon and between 
the entire set of ribbons relative to this central axis is calculated. 

(e) Vertical mass distribution: each point along the ribbon skeleton is considered to carry the same 
weight. To determine the height of each ribbon’s center-of-mass, the z-coordinates of each 
ribbon’s points are averaged. To determine the vertical distribution of the entire slide, the average 
of all z-coordinates is evaluated independent of ribbon of origin. 

(f) End-to-end distance: the Euclidian distance between each ribbon’s end points. 
(g) Inter-ribbon separation: All ribbons other than the ribbon of interest are converted into a point 

cloud. The distance between each point along the ribbon of interest and its nearest neighbor in 
the point cloud is determined. The code then averages these distances across each individual 
ribbon, as well as recorded independently of their associated ribbon 

(h) Number of inter-interactions: As the width of the ribbons can be up to 20 μm, we consider ribbons 
are close enough to interact with one another if they are within 10 μm of each other. We identify 
and count the number of instances where the inter-ribbon separation is less than or equal to this 
cutoff. 

(i) Length: Sum of the distance between each pair of neighboring points along the ribbon backbone. 

 

Derivation of Curvature and Relaxation Time Equations 

The total energy U of a ribbon, as a function of time t, is given by: 

(Eq. S2) 𝑈(𝑡) = ∫ d𝑠 {
1

2
𝐸𝐼𝑦𝑦𝜅2(𝑠, 𝑡) − (𝛾𝑃Δ𝑋𝑦)𝜅(𝑠, 𝑡)}

𝐿

0
 

Where E is the Young’s modulus, Iyy is the second moment of area of the ribbon’s cross-section, 𝜅(𝑠, 𝑡) is 
the curvature at position s and time 𝑡, P is the cross-sectional perimeter, and ΔXy is the offset between 



the centers of the ribbon’s cross-sectional perimeter and cross-sectional area. Assuming that the ribbon 
lies along the x-axis with its thickness along the y-axis, its moment about the z-axis, Mz(s,t) is described 
as 

(Eq. S3) 𝑀𝑧(𝑠, 𝑡) = 𝐸𝐼𝑦𝑦𝜅(𝑠, 𝑡) − 𝛾𝑃Δ𝑋𝑦 

We assume that the ribbon deforms only in the xy-plane, and is therefore described by the reduced 
Kirchhoff rod equilibrium equations, namely8 

(Eq. S4) 
𝑑𝑭

𝑑𝑠
=  −𝒇(𝑠, 𝑡), and 

(Eq. S5) 
𝑑𝑀𝑧

𝑑𝑠
= (𝑭(s, t) × �̂�(𝑠, 𝑡))𝑧 . 

Here, �̂�(𝑠, 𝑡) is the unit tangent vector along the ribbon, and 𝑭(s, t) is the internal force along the ribbon 
and 𝒇(𝑠, 𝑡) is the external force density along the ribbon. 

 We next assume that each segment of the ribbon is subject to Stokes drag. Therefore, each point 
𝒓(𝑠, 𝑡) along the ribbon will experience a force proportional to the velocity 𝒗(𝑠, 𝑡) = 𝜕𝑡𝒓(𝑠, 𝑡). The force 
per unit length is given by 

(Eq. S6) 𝒇(𝑠, 𝑡) = −𝜁
𝑑𝒗

𝑑𝑠
 , 

where 𝜁 is a drag coefficient. By integrating over s, the internal force becomes 

(Eq. S7) 𝑭(s, t) − 𝑭(0, 𝑡) = 𝜁 ∫ 𝑑𝑠′ 𝑑𝒗

𝑑𝑠′

𝑠

0
= 𝜁(𝒗(𝑠, 𝑡) − 𝒗(0, 𝑡))  . 

Finally, we assume that the ribbon is attached to the substrate at s = 0, leading to the boundary conditions 
𝒗(0, 𝑡) = 0 and 𝑭(𝑠, 𝑡) = 0, and thus 

(Eq. S8) 𝑭(s, t) = 𝜁𝒗(𝑠, 𝑡) . 

When considering the moment balance, we express the velocity at segment s in terms of the local 
tangent and normal frame �̂� as 

(Eq. S9) 𝒗(𝑠, 𝑡) = 𝑣𝑡(𝑠, 𝑡)�̂�(𝑠, 𝑡) + 𝑣𝑛(𝑠, 𝑡)�̂�(𝑠, 𝑡) 

Noting that the tangential component vt does not contribute to the moment Mz and �̂� × �̂� = �̂�, we 
simplify the mechanical equilibrium condition to 

(Eq. S10) 
𝑑𝑀𝑧

𝑑𝑠
= −𝜁𝑣𝑛(𝑠, 𝑡) . 

We next assume that the ribbon is constrained to lie flat against the substrate for s < 0, which 
corresponds to the position of the ribbon anchor. The ribbon curves along the interval 0 < s < L, so 
integrating Eq. S10 from s = 0 to s = L, we find that 

(Eq. S11) 𝑀𝑧(𝐿, 𝑡) = −𝜁 ∫ d𝑠𝑣𝑛(𝑠, 𝑡) = −𝜁𝐿〈𝑣𝑛〉(𝑡)
𝐿

0
 , 

where the normal component of the velocity averaged along the length of the ribbon is represented as 

(Eq. S12) 〈𝑣𝑛〉(𝑡) =
1

𝐿
∫ d𝑠𝑣𝑛(𝑠, 𝑡)

𝐿

0
 . 

We consider a minimal model of ribbon shape that satisfies the shape constraints, namely 



(Eq. S13) 𝒓(𝑥, 𝑡) = �̂�𝑥 + �̂�
𝑘(𝑡)

2
𝑥2 , 

where positions along the ribbon are expressed in terms of the 𝑥-coordinate. To leading order in the 
small deflection approximation, 𝑠 ≈ 𝑥 and furthermore 

(Eq. S14) �̂�(𝑥, 𝑡) =
d𝒓

d𝑠
≈ �̂� + �̂�𝑘(𝑡)𝑥 , 

(Eq. S15) �̂�(𝑥, 𝑡) = �̂� × �̂�(𝑥, 𝑡) ≈ �̂� − �̂�𝑘(𝑡)𝑥 , and 

(Eq. S16) 𝜅(𝑥, 𝑡) =
d2𝒓

d𝑠2 ∙ �̂�(𝑥, 𝑡) ≈ 𝑘(𝑡) . 

The normal component of the velocity and its average are therefore 

(Eq. S17) 𝑣𝑛(𝑥, 𝑡) =
1

2
�̇�𝑥2 and 

(Eq. S18) 〈𝑣𝑛〉(𝑡) ≈
1

𝐿
∫ d𝑥𝑣𝑛(𝑥, 𝑡) ≈

1

6
�̇�𝐿20

𝐿
 . 

This yields the moment balance: 

(Eq. S19) �̇� +
6𝐸𝐼𝑦𝑦

𝜁𝐿2 𝑘(𝑡) =
6𝛾𝑃Δ𝑋𝑦

𝜁𝐿2  . 

We integrate and assume that k(0) = 0 to yield 

(Eq. S20) 𝑘(𝑡) = 𝜅𝑜 (1 − 𝑒
−

𝑡

𝜏𝑜) , 

where 

(Eq. S21) 𝜅𝑜 =
𝛾𝑃Δ𝑋𝑦

𝐸𝐼𝑦𝑦
 and 

(Eq. S22) 𝜏𝑜 = 𝜁𝐿2/6𝐸𝐼𝑦𝑦 

Given that Iyy ~ wh3 and that the drag coefficient of long, thin rods can be approximated as9 

(Eq. S23) 𝜁 ≈
4𝜋𝜂𝐿

ln(
𝐿

𝑤
)
 

we can therefore solve for the relaxation time: 

(Eq. S24) 𝜏𝑜~
𝜂

𝐸

𝐿3

𝑤ℎ3ln (
𝐿

𝑤
)
 . 

  



 

Figure S1. Optical profilometry profiles of two different samples, measured to have an average thickness 
of (a) 36 nm + 7nm and (b) 73 nm + 40 nm across the slide, respectively. The dashed lines along the 
thickness profiles correspond to the x-axes of (c) and (d), which plot thickness as a function of location 
along said axis. Here, each peak corresponds to an individual ribbon of thickness h, width w, and cross-
sectional area A. 



 

Figure S2. Model of a unidirectional flow chamber used for confocal microscopy. (a) A 3D-model of the 
flow chamber with essential parts labelled. (b) A top-down view of a sample flow chamber sealed with 
parafilm. (c) A side-view of the flow chamber, with the ribbon array hanging from the cover slip that forms 
the ceiling of the flow chamber. The ribbons remain fully-submerged in water for the duration of the 
experiment. 

  



 

Figure S3. A 2D representation of the process of building up ribbons in 3D. (a) Individual (x,y) pixel values 
are sorted (b) into end points (blue), backbones (red), and junctions (black). (c) Neighboring pixels and 
backbones are connected, and their directionality relative to their neighboring junction is identified. (d) 
The final buildup of two ribbons (yellow, blue) and their overlapping sections (green). 



 

Figure S4. Morphological changes of (a-c) 72 nm and (d-g) 36 nm thick MSP ribbon arrays. All scale bars 
represent 200 μm. 



 

Figure S5. Additional computationally-determined quantitative descriptors. (a) The fraction of each ribbon 
length wherein the radius of curvature (1/κ) is greater than the theoretical ribbon length, suggesting that 
the ribbon is perfectly straight in these regions. (b) The average nearest neighbor distance between 
ribbons. (c) The fraction of instances where the distance between nearest neighbor ribbons are less than 
the width of a ribbon, suggesting that the surfaces are close enough to interact. All error bars correspond 
to a 95% confidence interval. 
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