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This supplementary information provides detailed calculations for the problems presented in the
main manuscript. It is intended for pedagogical purposes, primarily aimed at junior researchers,
and thus includes a high level of detail that may be superfluous for more advanced researchers. The
derivations are crafted with this educational intent in mind, although alternative approaches could
yield shorter and more concise derivations.

1. HARMONIC DRIVING FIELD

For a sphere immersed in a fluid to exhibit phoretic motion, it may be exposed to a gradient of a
harmonic driving field ¥. In the limit of a thin interaction layer, outside the interaction layer, this
field obeys the Laplace equation,

V20 =0, (1)
and is subjected to specific surface and far-field boundary conditions:

f-VU|g = —n-T5" D, 8,V|g+ = —n-T5" D,

or equivalently,

VV¥|, =-T°/D=-T>e,/D, 0, V|oo = T cos0/D = —r~1T'>* - x/D,

(2)
where S* represents the outer surface of the interaction layer (rg+ ~ a), D is the diffusion coefficient
associated with the phoretic process, and the relationship é, - €&, = cosf is used in the spherical
coordinate system x =ré, = (r,0,¢).

For convenience, we divide the driving field ¥ = &) + ¥(®) into the harmonic field ¥(P), which
accounts for the phoresis of a non-polarizable passive particle with the same geometry solely due to
the far-field flux '™, and the harmonic field ¥(*), which accounts for the self-phoresis of an active
particle of the same geometry solely due to the surface flux I'® ", The boundary conditions for these
two scenarios are

{ (9T\I/(p)|s+ =0, { 3T\If(“)|s+ = _ffL.Fs+/,D7

(3)
0, 0P| = T cosf/D = —r~ T -x/D, 0,0, =0,

The general solution to the harmonic driving field ¥(®), expressed in terms of spherical harmonics
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Yo (0,9), is

VO =AR > Y AR Yy ¥ B DY, (4)
£=1—-4<m<dl =0 —4<m<l

with the radial derivative,

a\p(a)

z (ALY, eSS (04 1)]BO) Dy, (5)

—L<m<l =0 —f<m</

We set A(()g) =0, or in other words, we are interested in the disturbance field. We will first obtain
the solution for the passive phoresis U(”) and then for the active self-phoresis ¥(*) and add them
up to obtain the harmonic driving field ¥ = U(®) + g(a),

For the passive phoresis field, using Y19 o« cosf and applying the far-field boundary condition
yields A Ym = - cos /D, Agfjl) = Agﬂ)l =0, and Agﬁ =0 for £ > 2. Then, applying the surface
flux condltlon for the passive non-polarizable particle

Oy \Il(p)|r a=0=-T%cosf/D + Z Z —(0+1)] B(P) -(2)y, (6)
=0 —l<m<¥

yields B{Y) = B") = B, =0 and B{?) = 0 for £ > 2. The equation ~I'* cos /D - 24> B Y1y = 0

leads to Big)Ym = —%a?’F‘” cos@/D. Thus, using é, - x = r cos§ we obtain
v () = Ag’é)Ymr + B;g)r 2Y10
=-T"*rcosf/D - —F‘X’ cosf/D
2r2

a3
- I'¢,.2/D- L T, x/D
273

=-T CC/D_% m/D
3
:—D-1[1+1(“) ]1‘°°-m (7)
2\r

Before proceeding with the active phoresis field, we define the banana-bracket notation {-}},,, for
the expansion coefficients in terms of spherical harmonics. That is, for a function ®(6,¢) defined
over the surface of a sphere, we have

4

8(0,0)=% 3 (@] p Yem(0,0) (a)

=0 m=-{

™ 2m
1900, = [ [ 9(0.6)¥7,,(6.0)sin o do (8b)

Now, for the active phoresis field, the far-field zero radial gradient condition 8T\I/(a)|oo = 0 neces-



sitates A(a) 0. The surface flux condition yields

arqf<a>|s+:éz PN 1B{a DY, =~ T5" /D = - ; Z D a1, Yim (9)
0 o< 0Om=

where, in the last step, we have expanded the surface flux n - IT'¥ " in terms of spherical harmonics.
Exploiting the orthogonality of the spherical harmonics leads to Béfg =a*?(t+1)"'D7! {Iﬁ . I‘SJr[}

m
and we obtain the active self-phoresis field,
oo £+1
@ (z) = D! a 2) h.TS"
(@ (z) =D ; €+1(r Yim {f2-T |}€ (10)

—L<m<t

Finally, we obtain the disturbance field by superposing the fields due to passive phoresis and
active self-phoresis ,

U(z) = 0D (z) + P (2) = D" ;éil(a)mn,mﬂﬁ-r“ﬂm—p-l[1+;(j)g]x.r“” (11)

—£<m<e

which is Eq (17) in the main manuscript.

2. AXISYMMETRIC SELF-PHORETIC PARTICLE WITH MULTIPLE SURFACE
REGIONS

For the general axisymmetric scenario with k& axisymmetric regions, the distribution of phoretic
mobility over the sphere surface is described by

M(l) 0S9<01

0, <0<0,

u(0) = (12)

p) 01 <0< =7

where 6;’s define the boundaries of the regions. We can rewrite the expression using the Heaviside
step function:

0 6<0

1
1 6>6 (13)

H(H-0) = {
1(0) = pM[1=H(0-01)]+p P [H(0-01) - H(0—02) ]+ +pF D [H(0-0)_2) — H(O—0p,_1) ]|+ 1 H(0-0),_1)

= D+ [p® =y OTH (O = 01) + (1P = p@VH(O - 02) + -+ [p® = pEDTH (6 - 0, 1)

k-1 . .
=+ 3 [ - pOTH(6 - 6;) (14)
j=1
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In the last term of the first line, we have omitted —p*) H(#—6},) to include 6, = 7 in the calculations.
Additionally, this term is non-zero in the domain 6 > 6, = w, which does not enter the calculations.

The motion is along the symmetry axis e,. Using e, - ey = —sinf, we have aé, - Vg = —sin60y.
Combining this expression with &,-n =¢€,-&, =cosf and dgH(6-0") = 6(0 - 6"), where §(0) is the
Dirac delta function, the translational field kernel is given by

e, Ky=-ae, Vsu+2e, nu

=sinf dgp + 214 cos b

k-1 ) ) k-1 )
=sinf )’ [ = U D16(0 - 6,_1) + 2™ cos 6 + 2 cos b > (9 - U D1HO-6;1)
j=1

j=1
k-1 ) )
=2uM cos @+ > [ — D [sin05(0 ~ 0;-1) + 2 cos OH (6 - 6;-1)] (15)
j=1

Defining the dimensionless function
G(0;0;) =sinB5(0 —0;) +2cosOH (6 - 6;), (16)

which is Eq. (34a) in the main manuscript, we can write the field kernel for translational velocity
along the symmetry axis in the form

k-1 . )
e, Ke=2uW cos+ > [ - u0"D1G(0;6;) (17)
j=1

which is Eq. (33a) in the main manuscript.

To obtain the flux kernel for motion along the symmetry axis,

R + = 1 .
e I =2 % 1 {&: - Kelt g Yem, (18)
£=0 —4<m<d

we need to obtain {é. -K[},,,, and thus, {cosf[,,, and {G(0;0;)[,. . Using cos® = AY1o(0,d),
where A =2\/7/3, we have

T 27
feos@],, = f f AY10Y,,, (0, 6) sin0df dd = Ady16pm.0, (19)
0 0 ’

leading to the first term of the flux kernel ,

ad 1 ad 1 1
gy P costll, Yo =200 3 7 AS G0 Ve = 2D 5 AVL0 = uD cos . (20)
—L<m<e —L<m<e

Next, we calculate {G(0;6;)[},,,. Using

Yo (0,0) = Yem(0,0)e™?, Y, (0,6) = Yem(0,0) e, (21)



for the first term in Eq. , we have

{sin66(0 - 6,)[},,, = fow fozw sin06(60 - 0,) Y,',,, (0, ¢) sin 6 db dop
s 27 ‘
= [ [ sin08(0-6,) Yen(0.0) e sin0 o do
= /(;%r =M dg foﬂ sin®06(0 - 6;) Yo.m(6,0) do

= 27757n,0 Sin2 ej Y@Jn(oj; O)
=27 SiIl2 9j ngo(ﬁj,()) 5m,0 (22)

For the second term in Eq. (16]), we have

i 2m
2cos0H (0 -0;)]}, = f f 2cos OH (6 - 0;) Y, (6,¢)sin6 df do
0 0 ’
T 27 .
= / / 208 0H (0~ 0;) Yo.m(0,0) €™ sin 0 d6 d¢
0 0

27 . T
:f e*ZM¢d¢f H(0 - 0;) Yyn(60,0) [2cosOsin 0] db
0 0
= 2760 / H(0 - 6;) Yom(6,0)sin 20 d6

0

= 2760 fe Ye0(6,0)sin20 d6 (23)

J

Combinig Eqns. and yields
1G6(0: 014, = 6(6:05)l} 9 m.0, (24)
where

16(6:0,)] ., = 2 sin®6; Yi.0(6;,0) + 27 fa Yi.0(6,0)sin 26 df. (25)

J

Therefore, we define
60:0)-3 %ﬂew;ej)umn,m(e,as)
-3 ;m 60,0 D 0¥ium (6, 6)
600 Yeo(8,0)
| Yeo(8,0) sin? 9J-+/07r Yi0(6,0)sin20d6 | Y,.0(6,0), (26)

J

which is Eq. (34b) in the main manuscript. In the last two lines Y; ¢(6,0) = Yy 0(0, ¢) is written to



express that the axisymmetric scenario is independent of ¢. The flux kernel become

e, 17 = M cosh + z_: (YD — 1u1G(0;0;), (27)
i1

which is Eq. (33b) in the main manuscript.

3. AXISYMMETRIC JANUS SWIMMER

The distribution of surface flux and phoretic mobility over the surface of the Janus swimmer is
given by

[F(l)”u(l)]

0 us
: (28)
T®,u®] f<o<n

[ﬁ ’ FSJr ) /~L] B {
The corresponding flux kernel along the symmetry axis for this problem takes the form
é, - Kf+ = 1M cosh + [u(g) - u(l)] G(6;%). (29)
To calculate the translational velocity, we start with the first term
+ /2 ™
fscoseﬁ-l"s ds = 27Ta21"(1)f cosfsin 6 df +27ra21"(2)f/ cos @ sinf db
0 w/[2
a1y L (1 a2 o (1
=2ma“T" x| = |+ 2ma" T x [ —
2 2
=7a® [T -T73)] (30)

For the second term, we can write

G(6;5) =2 Gu(5)Ye0(6,0), (31)
=0
where
2 ™
Gu(r/2) = i [Y[,O(g,o) N [,/2 Yi.0(6,0)sin20 d&] . (32)

Therefore, the surface integration of flux weighted by G(0; 5 ) is
/Sg(e;g)ﬁ-rs*dsz Zgg(g)fsn,o(e,om.rs*ds
£=0
—2ra? Y [r“)gg(g)f2 Ye.0(6,0)sin6.d6 + r<2>gg(g)ﬁ Ye0(6,0)sin 6 d6
0 ™
2

£=0
1 -1\ 1
= 27a’T M) x (Z) 2ma’T? x (Z) = imﬁ [T® -] (33)



¢ ol 1 | 2| 3 |4 5 6 7 8| 9 10
Go(/2) 0| T |-z o |¥T| o |-3Ex g SEE —355‘{?
S Yeo(0.0)singde| 1| Y3 | o |V o | YT g | LB OO
[552 Yeo(6,0)sin6dp | 1| | o | I g | VI g | B TV

TABLE I. Terms for the integral involving second term of the flux kernel

where Table [I| shows that only ¢ =1 contributes. Therefore,

. -1 R St oA S+
ez'Uzm'/;+dS€Z‘Kt n-T

-1
= 47ra2D dS {u(l) cos O + [,u(z) - u(l)] G(; 1)}7% e

o s L [0, s’
47ra2D f dS cosfi - T *m[“ ] [ asg:5)n

-1 T
- 1) O _1r®@ 2 _ 0 2 _ 2
1 a2 uma [F -T ] Tl [,u I ] 2(1 [F r ]

[Fu) @] {u“) L1 [ —u(”]}

4D 2

- 87) [pu) ST [® 4+ 0] (34)

which is equivalent to Eq. (37) in the main manuscript.

4. A SOURCE-SINK PROBLEM WITH A CONDUCTIVE PASSIVE REGION IN THE
MIDDLE

The microswimmer consists of three regions with phoretic mobility and flux distributions,

p® =@ 0<h<0, r=n, 0<h<6,
(@) ={ y@=py® 9,<0<0,, AT ={T@=0 6,<0<0y, (35
p® = ple) g, <h<r G = f(Tg,601,05) 6<0<m

respectively. The relation I'® = f (Tp,01,02) is obtained via the steady-state condition for the
source-sink scenario,

0=fsd5ﬁ.rs*:2m2f AT singdo
0

(4 T
= 27Ta2F0f ' sin 6 df + 27Ta2F(3)f0 sin 6 df
0 2

= 27a*Ty(1 - cos by ) + 2T (1 + cos B,) (36)



which leads to

r® - _Losﬂl T

. 37
1+ cos by 0 (37)
Hence, the translational flux kernel reduces to
e K7 = p cost + [u® - D16 (0:01) + [1®) - D] G(6:62)
=i cos 0+ [u® - p]G(0;01) + [ - ]G (0:62)
= cos 6 + [P - u{[G(6;61) - G(6562)] (38)

which is Eq. (38) in the main manuscript.

If there was no passive region in the middle and the surface areas of the source and sink were
equal, that is, 6 = 62 = 5, we would have a Janus sphere, and we consider the microswimmer speed
corresponding to this scenario as the reference velocity scale,

-1 . St A S+
U(ref) = mﬁdsez'Kt n-IT
-1 2 ™
= oD (2ra?u(®) [Fo f cos@sinfdf + (-T') /;/2 cos fsin Gdﬂ]
)
i
S (39)

which is Eq. (42) in the main manuscript.

Now, for the three-region microswimmer, we start with the uniform phoretic mobility term in
the flux kernel ,

-1 v —27a? (a)F 0 1- T
[SdSu(a)COSGﬁ-I‘S :m”o[f lcososinodo—ﬂf cosasmoda]
0

4ma?D 4ma?D 1+ cosfy Jo,
1 1-cosb; [ 1
o 2 L)
(f)[251n ! 1+ cos by 251n 2
0
= Utref) (2 + cos 1 — cos 0) sin® 51 (40)

For the term with phoretic mobility difference we have

_1 ) .
s [LAS P - u[G(0:01) - G(6:6,) ] T
-27a’T o,
:%[M(m_u(a)]fo [G(0;6,) - G(0;605)]sinb db

1 -cos 91 —27T(12F0 (p) (a) ™ . . .
i g 1 =) [ 716(8:00) ~G(0:62)] sin 0 do (41)



Using the expression for the reference speed we obtain

_1 ) .
5 [, 481 ~u[G(6:60,) - G(0:0) 17T

(») 01
) (Z(a) ‘1) U(ref)fo [G(6:61) - G(0;62)]sin 0 db

_ (p) ™
1-cosb (u 1)U(ref)fa [G(0;61) - G(0;02)]sinfdf

" 1+cosfy pla) -
(p) 61 1- 3 T
[ 2 1) Uy f [G(0:01) - G(0: 02)] sin 0 d) — L=<501 f [G(0:0,) - G(0:05)] sin 0 df
(@) 0 1+ cosfy Jo,
(42)
Therefore, defining the dimensionless velocities,
.o b1
Utunif) = (2 + cos 01 — cos 02 ) sin ) (43a)
A 01 ) 1-—cosb; ™ .
U= f dfsin0[G(0;01) - G(6;02)] - ————— dfsin0[G(0;601) - G(6;62)], (43b)
0 1+ cosby Jo,

which are Eq. (41a) and Eq. (41b) in the main manuscript, respectively, the translational velocity
along the symmetry axis becomes

e, U uP) A
= Uluni —-1]|U, 44
U(ref) (unif) + (M(a) ) ( )

which is Eq. (40) in the main manuscript.

5. NON-AXISYMMETRIC SELF-PHORETIC PARTICLE
In this scenario, the position-dependent phoretic mobility p(8) is given by
p(0) = ' + (@ = D] H (O~ 0o), (45)
and the normal component of the flux 7o - T'® " over the surface of the sphere is given by
7T (0,¢) = [1- H(0-6)][1-2H (¢ - )] L. (46)

We aim to obtain the translational U and rotational € velocities of the self-phoretic particle.

A. Translational Velocity

The particle’s translational velocity is along the y-axis, with the field kernel

ey -Ki=-aé, Vsu+2é, -np=—&, €90yu+2€,- e =sind(—cosbdgp+2pusinb) (47)



10

where we have used é,-ég = cosf/sin¢ and e, - €&, = sinfsin¢. Using the expression for the phoretic
mobility gives

é, K= sin¢{—cos€ [u(p) - u(a)] 0(0-6p)+2 (u(“) + [u(p) - u(a)] H(O- 90)) sin@}
=sing {2;4(‘1) sin 6 + [u(p) - u(a)] [2H (0 —0p) sinf - §(0 — 6p) cos 9]} (48)

and thus, we can write the field kernel for translation along the y-axis as

&y Ky =sing {25 0) + [P - p D] 0F ) = £ (0)sing (49)
07(6;00) = 2H (0 — ) sind — §(0 - 6) cos b (50)

which are Eq. (47a) and Eq. (47b) in the main manuscript, respectively.

To obtain the translational flux kernel we need to calculate {|é, - K[}, . The dependence of the
field kernel (49) on sin¢ necessitates that the flux kernel coefficients {le, - K[}, ~can be non-zero
only when m = +1, and thus ¢ # 0. Using

27 7 27
{|éy~Kt[}21:f0 fo éy-Kth,lsmedodgb:fo fo &, -Ki(-Y;_,)sinfdfdg = - {&,-Ki}, | (51)

and Yy -1(0,9) ==Y, (0,0¢) = ~Y;.1(0,0)e™ we can write

-3 o [Hey Kib L Yo (0.0) + ey K, Vi (6.0

= 2 “il [{Iéy Kelry e’ —{e, - Kelrp 1™ ¢] Y,,1(0,0)

= ; ﬁ [Hey - Kibyy €+ fey - Kiby ] V2 (0,0)

- lil ﬁﬂ{e[{]éy Killy, ew]Yg,l(e,O) (52)

where Re[-] returns the real part of the complex number. Evaluating
e ey Kby, = e { ¥ () singl}, |
—e [ " A PO sing! Y7L (0, ¢) sin 06 do’
= ei® /O 7 i sin ol des fo " FY0)) Y0 (0',0) sind'do’
= (cosé + isin @) (=im) /0 " FY(0') Yol (0,0) sin0'd6’

— 7 (=icos + sin ) foﬂ FY(O') Yo (6,0)sin6'de’ (53)
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and taking its reals part, combined with Eq. , leads to

+ > 2 7"
e, K5 =sing Y ﬁym(e,o)f FY(8") Yo (6',0) sin6'd6’ (54)
=1 0

and we are left with the calculation of the integral. For the uniform phoretic mobility term
u{® (2sin0), using sin @ = BY; 1(6,0), where B = —2,/27/3, we have

Ym(e,())f [u(a)(Zsinﬂ')]YM(G',O)SinG'dﬂ':2u(“)Yg71(9,0)f BY1.1(6',0) Ye.1(6',0) sin60'd6’
0 0
B
=2u'Y,,1(6,0) (%5&1)
1
=2 Y BY; 1(6,0)6,
27
1
=~ sinb 6, (55)
™
and thus,
> 2T > 27

77 1
> ng,l(@,O) /0 [ (25in60")] V2,1 (0',0) sin0’do’ = > m;ﬂ(a) sin@d,1 = p(sind  (56)
¢=1 ¢=1

For the term corresponding to the difference of the phoretic mobilities we need to use direct inte-
gration. Therefore, defining

o0 2 T
or(9;6,) = Z““l{zfgo Y;1(0,0)(sin6')? d¢’ — sin 0, cosem,l(eo,o)}m,l(e,o) (57)
=1

which is Eq. (48b) in the main manuscript, we can write the y-component of the flux kernel in the
form,

éy- Kf+:sin¢>{,u(a) sin 6 + [,u(p)—u(a)] 9{(9;80)} = f1'(0) sin¢ (58)

which is Eq. (48a) in the main manuscript.
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Therefore, we can obtain the translational velocity,
R -1 ) St . gt
ey-UszdSey-Kt ’I’LI‘

-1 27 T
= [ [T sin0dodo[7(0) sin 6] {[1 - H(O - 00)][1-2H (6 - m)] T}
_ _1"0 21
~ 47D Jo

_ 7]
To ><4><f " sinfdo f7 ()
0

- 47D
()
f sinfdo ()
0

[1-2H(¢-)]sin¢do foﬂ sin6.d6 T (0)[1 - H (6 - 0))]

_ U(ref) 2

Iu,(a) ;
_ Uten 2
’u,(a) T

2

™

0
/(; " singdo {u(“) sinf + [u(p)—u(“)]@f(é);ﬂo)}

(p)

U, " inzodo + U | B0 1|2 [ snodoer (o:0
= Ulref) \A SI + (ref) W_ ;A S t( ) 0)

21 1 . (p) 2 b
= Vg5 (90 = smza) 4 Uger [//j(“) - 1] = [ sinodo©F (9:00)

0
0y sin26 1) 2 oo r
:U(ref)(?- — )+U(ref) Fs-1 ff 5in 0.6 O (6 6) (59)
1 7w Jo

Therefore, defining the dimensionless velocities,

90 sin 290
Utunify = — — ) 60
(unif) = =~ T (60)
A9 0o r
U=" / d6 sin 6 OF (6:6,). (61)
m™JOo

which are Eq. (50a) and Eq. (50b) in the main manuscript, respectively, we have the scaled trans-
lational velocity along the y direction,

e, U Iu(p) A
=Umin + | —— -11|U, 62
U(ref) (nif) (/J'(a) ( )

which is Eq. (49) in the main manuscript.

B. Rotational Velocity

For the rotational field kernel, we have

Ky =~ x (aVsp) = —&, x g0t = —&40g1 = &4 [P — ] (0 - 05) (63)



13

which is Eq. (51a) in the main manuscript. Since the only ¢ dependence is in &4, only {K,[, ,,

terms can be non-zero, and we have

& 1 > 1 :
’Cf = Z Z 7.1 {]KTI}Zm Yz’m(9,¢) = Z 72Re[{|Krl}z,1 € ¢]Yz,1(9,0)
=0 —tems<r £+1 i t+l

Evaluating

™ 2
(e 3(0 - 00)b,, = fo fo €40(0 - 00) Yi,(0,0) sin 0.6 do
27 . T
- f e ey do f 5(6 - 00) Ye1(6,0) sin .o
0 0
2w . T
- f e (—singe, +cos¢éy)d¢f 5(0— 60) Ye.1(6,0) sin 0.6
0 0
= W(ZéL + éy)n71 (90, O) sin 90
and taking its real part leads to
2Re [{IKT[}&1 ew] =-27 [,u(p) - ,u(a)] Y2,1(00,0) sin 0 Re [ (ie, + éy)ew]
=27 [,u(p) - ,u(“)] Y7,1(60,0) sin b (—sin¢g &, + cos ¢ &)
=-27 [,u(p) - ,u(“)] Y;.1(00,0)sin by é4

and thus,

oo

. ) a 27 .
’Cf = —€¢ [/,L(p) _/14( )] Z mn,l(eoao) Slne() Yé,l(970)
=1

Thus, defining

Or(0;00) = 27 3" Y21 (60,0)Y2.1(6,0) [S‘éngo]
= +1

which is Eq. (52b) in the main manuscript, we have
17 =~y [n® - 9] O (;65).

which is Eq. (51b) in the main manuscript.

(64)
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Calculating the angular velocity is straightforward,

-3 dSKS a5
8ma’D Js+
-3 u 27 T R r
- i [ =u@]a? [ [ sing oo [-e,0F (0:00) ] {[1 - H(O - 60)][1 - 2H (6~ )] T}
-3 2 . T
= 2 [0 =y @] [T - 2H (6 m))(~e0)do [ sin0d8OF (0:60)[1 - H(6 - 60)]
8maD 0 0
— 6
:ﬂ[u(p)_u(a)]leéxxf * sin6dg OF (4; 6,)
8mraD 0

= e,
™ JOo

Utfre (p) 0
(ref) [M _1]3f * sin0dg OF (4; 6,) (70)
a 'u(a)

Therefore, defining the reference angular velocity scale as

Q(rof) = U(rcf)/a7 (71>
the scaled angular velocity as
Q u®) ) A
=e, -1]1Q(6p), (72)
Q(ref) (M(a) ( O)

which is Eq. (54) in the main manuscript. The dimensionless function is

0o
6(90)=§/ d6 sin 6 ©X(0: 6,), (73)
m™JOo

which is Eq. (55) in the main manuscript.
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