Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2024

Supporting information for

Transition of iPB-1 with low molecular weight deposited from solution

Jiaxin Huo, Jingqing Li, Shichun Jiang*

School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R.

China

* Corresponding author: scjiang@tju.edu.cn

Figure S1. DSC heating curves of the solution deposited F1400 samples (a) 0.2wt%-unstirred, (b) 1wt%-unstirred and (c) 1wt%-stirred after heat treatment and annealed for different time

X-ray measurements

The in-situ simultaneous small angle and wide angle X-ray scattering (SAXS / WAXS) measurements were performed during heating and cooling the F1400 samples at the beamline BL16B1 of the Shanghai Synchrotron Radiation Facility (SSRF, $\lambda = 0.124$ nm). The sample-to-detector distances were 2198 mm (SAXS) and 179 mm (WAXS). The exposure time was 5.9 s, the pixel size was 1475 × 1679, and the size of each pixel dot was 172 × 172 µm. The recorded data was background-corrected and integrated by using Fit2D software.

Figure S2. Selected SAXS profiles of the solution deposited F1400 samples during heating and after cooling to room temperature for the transition

Figure S3. WAXS profiles during heating of (a) 0.2wt%-unstirred; (b) 1wt%-unstirred and (c) 1wt%-stirred