
Supplementary information for “Microrheology of Active Suspensions”
A Explicit time-integration algorithm
Here, following the references 1–3, we describe an explicit time-integration scheme for solving model equations as follows. The set of
physical variables is assumed to be clearly defined at the discrete time step tn = n∆t.

First, we solve Eq. (5) in the main text without including fH as

v∗ = vn +
1

ρ

∫ tn+1

tn

ds
(
−ρv ·∇v +∇ ·

↔
Σvis + f

(f)
A

)⊥

, (S1)

where vn is the velocity field at t = tn and (· · · )⊥ denotes taking the transverse part.
Second, we update R

(G)
α , n̂α, and Rp as

R(G)
α (tn+1) = R(G)

α (tn) +

∫ tn+1

tn

dsV (G)
α , (S2)

n̂α(tn+1) = n̂α(tn) +

∫ tn+1

tn

dsΩ(G)
α × n̂α, (S3)

Rp(tn+1) = Rp(tn) +

∫ tn+1

tn

dsV p. (S4)

With these updated R
(G)
α , n̂α, and Rp, we also update Ψ

(b)
α (r), Ψ(f)

α (r), and Ψp(r).
Third, the particle velocities and angular velocities are updated by solving Eqs. (9), (10), (16), and (17) in the main text as

V (G)
α (tn+1) = V (G)

α (tn) +
1

Mα

∫ tn+1

tn

ds(F α,H + F α,int + F
(b)
α,A), (S5)

Ω(G)
α (tn+1) = Ω(G)

α (tn) +
↔
I

−1

α ·
[∫ tn+1

tn

ds(Nα,H +Nα,int)

]
, (S6)

V p(tn+1) = V p(tn) +
1

Mp

∫ tn+1

tn

ds(F p,H + F p,int + Fexx̂), (S7)

Ωp(tn+1) = Ωp(tn) +
1

Ip

∫ tn+1

tn

dsNp,H . (S8)

Here, the explicit forms of
∫ tn+1

tn
dsF α,H ,

∫ tn+1

tn
dsNα,H ,

∫ tn+1

tn
dsF p,H , and

∫ tn+1

tn
dsNp,H are given as

∫ tn+1

tn

dsF α,H =

∫
drρΨ(b)

α,n+1

{
v∗ −

[
V (G)

α (tn) +Ω(G)
α (tn)×

(
r −R(G)

α (tn+1)
)]}

, (S9)

∫ tn+1

tn

dsNα,H =

∫
drρΨ(b)

α,n+1

(
r −R(G)

α (tn+1)
)
×

{
v∗ −

[
V (G)

α (tn) +Ω(G)
α (tn)×

(
r −R(G)

α (tn+1)
)]}

, (S10)

∫ tn+1

tn

dsF p,H =

∫
drρΨp,n+1

{
v∗ −

[
V p(tn) +Ωp(tn)×

(
r −Rp(tn+1)

)]}
, (S11)

and ∫ tn+1

tn

dsNp,H =

∫
drρΨp,n+1

(
r −Rp(tn+1)

)
×

{
v∗ −

[
V p(tn) +Ωp(tn)×

(
r −Rp(tn+1)

)]}
, (S12)

where Ψ
(b)
α,n+1 and Ψp,n+1 denote Ψ

(b)
α (r) and Ψp(r) at t = tn+1, respectively.

Finally, we update the velocity field by embedding the rigid body motions in v∗ through the body force fH as

vn+1 = v∗ +
1

ρ

∫ tn+1

tn

dsf⊥
H . (S13)
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The explicit form of
∫ tn+1

tn
dsfH is determined to approximately fulfill the rigid body condition inside the regions of the swimmer bodies

and the probe particle, and it is given by∫ tn+1

tn

dsfH = −
N∑

α=1

ρΨ
(b)
α,n+1

{
v∗ −

[
V (G)

α (tn+1) +Ω(G)
α (tn+1)×

(
r −R(G)

α (tn+1)
)]}

−ρΨp,n+1

{
v∗ −

[
V p(tn+1) +Ωp(tn+1)×

(
r −Rp(tn+1)

)]}
. (S14)

Equations (S9)-(S12), and (S14) enforce the momentum and angular momentum exchanges between the solvent and swimmer bodies.
The velocity field at the new time step is

vn+1 = v∗[1− N∑
α=1

Ψ
(b)
α,n+1 −Ψp,n+1

]
+

N∑
α=1

Ψ
(b)
α,n+1

[
V (G)

α (tn+1) +Ω(G)
α (tn+1)×

(
r −R(G)

α (tn+1)
)]

+Ψp,n+1

[
V p(tn+1) +Ωp(tn+1)×

(
r −Rp(tn+1)

)]
(S15)

with

∇ · vn+1 = 0. (S16)

B Supporting simulations investigating front-rear asymmetry in scattering of swimmers
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Fig. S1 (Color online) The trajectories of swimmers measured in the co-moving frame with the probe particle, R
(G)
α − Rp = (X̃α, Ỹα, Z̃α), are

plotted. In (a) and (b), for Fex = 10 and 100, respectively, swimmers 1 and 2 are initially placed at R(G)
α = (14a,±4a, 0) with n̂α = (−1, 0, 0), while

swimmers 3 and 4 are at R(G)
α = (−14a, 0,±4a) with n̂α = (1, 0, 0). On the other hand, in (c) and (d), for Fex = 10 and 100, respectively, swimmers

1 and 2 are initially placed at R
(G)
α = (10a,±10a, 0) with n̂α = (−

√
2/2,∓

√
2/2, 0), while swimmers 3 and 4 are at R

(G)
α = (−10a, 0,±10a) with

n̂α = (
√
2/2, 0,∓

√
2/2). In (a)-(d), for swimmers 1 and 2, (X̃α/L, Ỹα/L) is ploted, while for swimmers 3 and 4, (X̃α/L, Z̃α/L) is ploted. By

considering the spatial symmetry of the swimmer trajectories, the trajectories of swimmers 1 and 3 for the cases with HIs are plotted, and those of
swimmers 2 and 4 for the cases without HIs are plotted. Furthermore, the arrows indicate the instantaneous directions of each swimmer.

The orientation distribution of swimmers P (θ̂;x, y), shown in Fig. 5 in the main text, indicates that swimmers suffer from more
significant scatterings at the front side than at the rear, resulting in the asymmetric shape of P (θ̂;x, y) between the front and rear sides.
Here, we present complementary simulation results, demonstrating front-rear asymmetry in scattering of swimmers with the following
setup. At t = 0, the probe particle is placed at the center of the system, and four swimmers, with active force being turned off (FA = 0),
are arranged to face the probe in a spatially symmetric manner: swimmers 1 and 2 are on the front side and swimmers 3 and 4 are on
the rear side, as illustrated in Fig. S1. For t > 0, the probe particle is dragged by a constant force (Fex) along the x-direction, and the
active force is turned on (FA = 20). Then, these four swimmers move toward the probe from different directions.

The swimmer trajectories are shown in Fig. S1, demonstrating that the collision conditions and the presence or absence of HIs
strongly influence the trajectories. With HIs, swimmers approaching the probe particle from the rear tend to face the probe more than
those approaching from the front. This behavior is attributed to the comparatively weaker repulsive nature of HIs between swimmers
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and the probe on the rear side than on the front. This repulsion on the rear side even becomes an attraction for larger values of Fex. In
contrast, without HIs, swimmers that collide with the probe from the front experience stronger repulsions than those approaching from
the rear. Furthermore, as Fex increases, swimmers from the rear cannot keep pace with those in the front.

C Orientation distributions of swimmers without HIs at Fex = 100
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Fig. S2 (Color online) The orientation distributions of swimmers P (θ̂;x, y) at R = 20, φ = 0.032, and Fex = 100 without HIs, with the block size
being 2a = 0.32R(= 6.4). As described in the main text, P (θ̂;x, y) is defined as P (θ̂;x, y) = c(x, y)

∑
α〈δ[θ − cos−1(t̂α · x̂)]δ(r − Rα)〉, where

r = (x, y, 0), x̂ is the unit vector along the x-axis, and t̂α = n̂
||
α/|n̂

||
α| with n̂

||
α denoting the projected swimming direction onto the x-y plane. The

center of the probe sphere is located at (x, y) = (0, 0). Following Fig. 5 in the main text, the plot settings in (a)-(f) are as follows: The panels
present the distributions at Fex = 100. The violet and dark-green lines correspond to P (θ̂;x, y) (x < 0) and P (180◦ − θ̂;x, y) (x > 0), respectively,
calculated in the regions indicated by identical colored characters. The normalization factor c(x, y) is determined so that the total area enclosed by
these lines equals 1. The dotted lines guide the normal and tangential directions along the probe sphere.

In Fig. 5 in the main text, we present the orientation distribution of swimmers P (θ̂;x, y) around the probe particle at Fex = 10 and
100 with HIs. Here, Fig. S2 shows the results at Fex = 100 without HIs.

For x < 0, a comparison of Fig. S2 with Fig. 5 reveals that the swimmers tend to move along the probe surface from the rear to the
front more with HIs than without HIs. This behavior is attributable to HIs between the swimmers and the probe particle; at Fex = 100

the flow field induced by the probe particle’s motion is strong enough to guide the swimmers in the probe particle’s moving direction.
However, without HIs, there is a nearly equal distribution of swimmers moving from the rear to the front and in the opposite direction.
On the other hand, for x > 0, in Figs. 5 and S2, we find that, in the regions labeled as (a) and (b), swimmers tend to face the probe
particle more without HIs than with HIs; the swimmers are significantly scattered by hydrodynamic repulsions induced by the probe
particle’s movement. Also, in the regions indicated as (c)-(e), a similar distinction between with and without HIs is observed, although
it is less pronounced.
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D Derivation of the active stress
We here derive an expression for the local active stress tensor defined in a small subsystem denoted as K, with a volume VK . Let us
formally write the active force density due to the α-th swimmer as:

∇ · ↔σact
α = FAn̂α

Ψ
(b)
α (r)

V(b)
α

− FAn̂α
Ψ

(f)
α (r)

V(f)
α

, (S17)

where the first term on the right-hand side represents the active force acting via the body-part region, included through the body
force fH , and the second term represents that acting on the flagellum-part region, directly included in the Navier-Stokes equation,
Eq. (5) in the main text. In this study, as described in Sec. 2 in the main text, the body and flagellum parts of the α-th swimmer are
represented through the field variables Ψ

(b)
α (r) and Ψ

(f)
α (r), and whose explicit expressions are provided in Eqs. (1) and (2) in the

main text, respectively. Furthermore, V(b)
α and V(f)

α represent the volumes of the body and flagellum, respectively. Here,
↔
σact

α is formally
interpreted as the local active stress due to the α-th swimmer; its divergence yields the active force density as Eq. (S17). We integrate
this expression by multiplying r over the subsystem K as:∫

K

drri∇kσ
act
α,kj =

∫
K

dr∇k[riσ
act
α,kj ]−

∫
K

drσact
α,ij

=

∫
∂K

dSn̂k[riσ
act
α,kj ]−

∫
K

drσact
α,ij

= FA

∫
K

drrin̂α,j

[
Ψ

(b)
α (r)

V(b)
α

− Ψ
(f)
α (r)

V(f)
α

]
, (S18)

where, for clarity, we express equations denoting coordinate components (i, j, k = x, y, z), and for simplicity, the summation convention
is used. The first term on the right-hand side in the second line represents the surface integral over the boundary of the subsystem
K. Here, n̂ represents the unit vector that is normal to and pointing outward from the enclosing surface ∂K, and dS denotes the
surface area differential on ∂K. When the entire part of the α-th swimmer exists inside K, the active stress

↔
σact

α should be zero on
∂K, implying that the stress caused by the particle forces itself is local, affecting only the regions where the particles are located. Its
propagation to distant regions occurs via the solvent in the form of the viscous stress. We finally obtain∫

K

dr↔
σact

α = −FA

∫
K

drrn̂α

[
Ψ

(b)
α (r)

V(b)
α

− Ψ
(f)
α (r)

V(f)
α

]

= −FA

(
R(G)

α −R(CF )
α

)
n̂α

= −FA`0n̂αn̂α. (S19)

By setting (1/VK)
∫
K

dr↔
σact

α as a contribution from the α-th swimmer, we define the average active stress in a small subsystem K as
Eq. (34) in the main text. This derivation can also be used to calculate the particle stress, and the obtained expression corresponds with
that derived through the method detailed in the reference 4, which is based on the fundamental stress definition.

It is worth to note the following. Equation (S19) is ideally derived for situations where particulate forces are modeled as point forces.
However, in the present study, particles are not represented as points but as finite regions defined by Ψ

(b)
α and Ψ

(f)
α , meaning that the

active forces are no longer regarded as point forces. For such a case, in Eq. (S19), these Ψ
(b)
α and Ψ

(f)
α likely cross the boundary of the

given hypothetical subspace, over which the average is taken. This situation may complicate how we split the stress between different
adjacent subspaces. Nevertheless, when focusing on average stresses rather than instantaneous stresses, the distinction between mod-
eling particles as points or regions does not matter. Because the average stress is calculated through a smooth positional distribution
function, the difference between the two cases does not significantly affect the overall result.
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