Supporting Information 1

Rotational and translational diffusion of biomolecules in complex liquids and HeLa cells

Jarosław Michalski, Tomasz Kalwarczyk, Karina Kwapiszewska, Andrzej Poniewierski, Aneta Karpińska, Karolina Kucharska, Robert Hołyst and
Institute of Physical Chemistry, Polish Academy of
Sciences Kasprzaka 44/52, 01-224 Warsaw, Poland
Jörg Enderlein
Third Institute of Physics - Biophysics, Georg August University, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany

(Dated: March 18, 2024)

ROTATIONAL DIFFUSION COUPLED TO A FIRST-ORDER REACTION

A. The Model

We consider a spherical nanoparticle with a fluorescent dye attached to its surface. The dye is represented by an electric dipole moment, the orientation of which can be normal or tangential to the particle's surface. We assume that the orientation of the dye can change as a result of a chemical reaction

$$
\begin{equation*}
A \rightleftarrows B \tag{1}
\end{equation*}
$$

where the A and B species represent nanoparticles with normal and tangential dye orientation, respectively. The reaction rate constants for the forward and backward reactions are k_{+}and k_{-}. We consider rotational diffusion coupled to reaction (1) via the reaction-diffusion equation:

$$
\begin{align*}
\frac{\partial \delta c_{A}}{\partial t} & =-D \hat{J}^{2} \delta c_{A}-k_{+} \delta c_{A}+k_{-} \delta c_{B} \tag{2a}\\
\frac{\partial \delta c_{B}}{\partial t} & =-D \hat{J}^{2} \delta c_{B}+k_{+} \delta c_{A}-k_{-} \delta c_{B} \tag{2b}
\end{align*}
$$

where D is the rotational diffusion coefficient and \hat{J}^{2} is the square of the angular momentum operator. δc_{i}, for $i=A, B$, depends on time and Euler angles ϕ, θ and ψ, denoted Ω for brevity, as follows: $\delta c_{i}(\Omega, t)=P(\Omega, t) \delta C_{i}(t) . P(\Omega, t)$ is the probability density of finding the particle's principal axes rotated by Ω with respect to the laboratory frame, whereas $\delta C_{i}(t)=$ $\int d \Omega \delta c_{i}(\Omega, t)$ is the deviation of the concentration of component i from its equilibrium value \bar{C}_{i}. Then Eq. (2) is decomposed into the rotational diffusion equation [1, 2]

$$
\begin{equation*}
\frac{\partial P}{\partial t}=-D \hat{J}^{2} P \tag{3}
\end{equation*}
$$

and the reaction equation

$$
\begin{align*}
\frac{\partial \delta C_{A}}{\partial t} & =-k_{+} \delta C_{A}+k_{-} \delta C_{B} \tag{4a}\\
\frac{\partial \delta C_{B}}{\partial t} & =k_{+} \delta C_{A}-k_{-} \delta C_{B} \tag{4b}
\end{align*}
$$

The solution of Eq. (3) that satisfies the initial condition $P(\Omega, 0)$ is

$$
\begin{equation*}
P(\Omega, t)=\int d \Omega^{\prime} G\left(\Omega, \Omega^{\prime}, t\right) P\left(\Omega^{\prime}, 0\right) \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
G\left(\Omega, \Omega^{\prime}, t\right)=\frac{1}{8 \pi^{2}} \sum_{l=0}^{\infty}(2 l+1) e^{-D l(l+1) t} \sum_{k, m=-l}^{l} D_{k m}^{l}(\Omega) D_{k m}^{l *}\left(\Omega^{\prime}\right), \tag{6}
\end{equation*}
$$

is the Green's function, and $D_{k m}^{l}(\Omega)$ are the Wigner rotation matrices [3]. They satisfy orthogonality relations

$$
\begin{equation*}
\int_{0}^{\pi} \sin \theta d \theta \int_{0}^{2 \pi} d \phi \int_{0}^{2 \pi} d \psi D_{k m}^{l *}(\phi, \theta, \psi) D_{k^{\prime} m^{\prime}}^{l^{\prime}}(\phi, \theta, \psi)=\frac{8 \pi^{2}}{2 l+1} \delta_{l, l^{\prime}} \delta_{k, k^{\prime}} \delta_{m, m^{\prime}} \tag{7}
\end{equation*}
$$

When $t=0$, the Green's function is equal to the Dirac function $\delta\left(\Omega, \Omega^{\prime}\right)$.
The solution of Eq. (4) that satisfies the initial conditions $\delta C_{A}(0)$ and $\delta C_{B}(0)$ is

$$
\begin{align*}
& \delta C_{A}(t)=\frac{1}{R}\left[\left(k_{-}+k_{+} e^{-R t}\right) \delta C_{A}(0)+k_{-}\left(1-e^{-R t}\right) \delta C_{B}(0)\right] \tag{8a}\\
& \delta C_{B}(t)=\frac{1}{R}\left[k_{+}\left(1-e^{-R t}\right) \delta C_{A}(0)+\left(k_{+}+k_{-} e^{-R t}\right) \delta C_{B}(0)\right] \tag{8b}
\end{align*}
$$

where $R=k_{+}+k_{-}$is the chemical relaxation rate. Finally, correlation functions, defined as $\left\langle\delta c_{i}(\Omega, t) \delta c_{j}\left(\Omega^{\prime}, 0\right)\right\rangle$, are expressed as follows

$$
\begin{equation*}
\left\langle\delta c_{i}(\Omega, t) \delta c_{j}\left(\Omega^{\prime}, 0\right)\right\rangle=G\left(\Omega, \Omega^{\prime}, t\right)\left\langle\delta C_{i}(t) \delta C_{j}(0)\right\rangle \tag{9}
\end{equation*}
$$

where \rangle is the ensemble average. Concentration fluctuations depend on time and the position vector and are subject to Poisson statistics. Since the initial positions of different molecules are not correlated, zero-time correlations are

$$
\begin{equation*}
\left\langle\delta C_{i}(\boldsymbol{r}, 0) \delta C_{j}\left(\boldsymbol{r}^{\prime}, 0\right)\right\rangle=\bar{C}_{i} \delta_{i j} \delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right) \tag{10}
\end{equation*}
$$

where \bar{C}_{i} is the average concentration [4]. The $\left\langle\delta C_{i}(\boldsymbol{r}, t) \delta C_{j}\left(\boldsymbol{r}^{\prime}, 0\right)\right\rangle$ correlations contribute to the autocorrelation function for translational diffusion, which is much slower than rotational diffusion. Therefore, for the rotational diffusion time scale, we can replace the local concentration fluctuations with their average over the observation volume V, i.e. $\delta C_{i}(t)=V^{-1} \int_{V} d^{3} r \delta C(\boldsymbol{r}, t)$. Consequently, Eq. (10) should be replaced with the initial condition $\left\langle\delta C_{i}(0) \delta C_{j}(0)\right\rangle=\bar{C}_{i} \delta_{i j} / V$. Using the last relation in Eq. (8) gives the autocorrelation and cross-correlation functions

$$
\begin{align*}
&\left\langle\delta C_{A}(t) \delta C_{A}(0)\right\rangle=\frac{\bar{C}_{A}}{V R}\left(k_{-}+k_{+} e^{-R t}\right)=\frac{\bar{C}_{A}}{V(1+K)}\left(1+K e^{-R t}\right) \tag{11a}\\
&\left\langle\delta C_{B}(t) \delta C_{B}(0)\right\rangle=\frac{\bar{C}_{B}}{V R}\left(k_{+}+k_{-} e^{-R t}\right)=\frac{\bar{C}_{B}}{V(1+K)}\left(K+e^{-R t}\right) \tag{11b}\\
&\left\langle\delta C_{A}(t) \delta C_{B}(0)\right\rangle=\frac{\bar{C}_{B}}{V R} k_{-}\left(1-e^{-R t}\right)=\frac{\bar{C}_{B}}{V(1+K)}\left(1-e^{-R t}\right) \tag{11c}\\
&\left\langle\delta C_{B}(t) \delta C_{A}(0)\right\rangle=\frac{\bar{C}_{A}}{V R} k_{+}\left(1-e^{-R t}\right)=\frac{\bar{C}_{B}}{V(1+K)}\left(1-e^{-R t}\right) \tag{11d}
\end{align*}
$$

where $K=k_{+} / k_{-}$is the reaction (1) equilibrium constant.

B. FCS correlation function

We need to calculate the correlation functions resulting from rotational diffusion of species A and B to apply the model described in Sec. A for measurements using fluorescence correlation spectorscopy (FCS). It is convenient to define A and B in terms of two different dipole orientation distributions, $V_{A}(\chi, \zeta)$ and $V_{B}(\chi, \zeta)$, where the polar angle χ and azimuthal angle ζ are detemined in the system of the particle's principal axes. In general, $V_{i}(\chi, \zeta), i=A, B$, can be expanded in spherical harmonics $Y_{l m}(\chi, \zeta)$:

$$
\begin{equation*}
V_{i}(\chi, \zeta)=\sum_{l=0}^{\infty} \sum_{m=-l}^{l} v_{l m}^{i} Y_{l m}(\chi, \zeta) \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
Y_{l m}(\chi, \zeta)=(-1)^{m} \sqrt{\frac{(2 l+1)(l-m)!}{4 \pi(l+m)!}} P_{l}^{m}(\cos \chi) e^{i m \zeta} \tag{13}
\end{equation*}
$$

if $m \geq 0$ and $Y_{l m}(\chi, \zeta)=(-1)^{m} Y_{l}^{-m *}(\chi, \zeta)$ if $m<0$. Hence, the expansion coefficients are

$$
\begin{equation*}
v_{l m}^{i}=\int_{0}^{\pi} \sin \chi d \chi \int_{0}^{2 \pi} d \zeta V_{i}(\chi, \zeta) Y_{l m}^{*}(\chi, \zeta) \tag{14}
\end{equation*}
$$

In order to express V_{i} in the lab frame, spherical harmonics must be rotated by Ω, which gives

$$
\begin{equation*}
V_{i}(\chi, \zeta \mid \Omega)=\sum_{l=0}^{\infty} \sum_{m=-l}^{l} v_{l m}^{i} \sum_{k=-l}^{l} D_{k m}^{l}(\Omega) Y_{l k}(\chi, \zeta) \tag{15}
\end{equation*}
$$

We then consider the probabilities of excitation and detection of a photon with polarization parallel $(\|)$ or orthogonal (\perp) to the excitation polarization, where the latter is oriented along the x-axis of the lab frame. These probabilities are proportional to the functions $U_{i}^{\|}(\Omega)$ and $U_{i}^{\perp}(\Omega)$, respectively, where $[1,2]$

$$
\begin{gather*}
U_{i}^{\|}(\Omega)=\int_{0}^{\pi} \sin \chi d \chi \int_{0}^{2 \pi} d \zeta \sin ^{4} \chi \cos ^{4} \zeta V_{i}(\chi, \zeta \mid \Omega), \tag{16a}\\
U_{i}^{\perp}(\Omega)=\int_{0}^{\pi} \sin \chi d \chi \int_{0}^{2 \pi} d \zeta \sin ^{4} \chi \cos ^{2} \zeta \sin ^{2} \zeta V_{i}(\chi, \zeta \mid \Omega) . \tag{16b}
\end{gather*}
$$

In the case of non-polarised detection studied in this work, $U_{i}^{\|}$and U_{i}^{\perp} are replaced by their sum

$$
\begin{equation*}
U_{i}(\Omega)=U_{i}^{\|}(\Omega)+U_{i}^{\perp}(\Omega)=\int_{0}^{\pi} \sin \chi d \chi \int_{0}^{2 \pi} d \zeta \sin ^{4} \chi \cos ^{2} \zeta V_{i}(\chi, \zeta \mid \Omega) \tag{17}
\end{equation*}
$$

Inserting Eq. (15) into Eq. (17) gives

$$
\begin{equation*}
U_{i}(\Omega)=\sum_{l=0}^{\infty} \sum_{m=-l}^{l} v_{l m}^{i} \sum_{k=-l}^{l} u_{l k} D_{k m}^{l}(\Omega), \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
u_{l k}=\int_{0}^{\pi} \sin ^{5} \chi d \chi \int_{0}^{2 \pi} d \zeta \cos ^{2} \zeta Y_{l k}(\chi, \zeta) \tag{19}
\end{equation*}
$$

The only non-zero coefficients are

$$
\begin{gather*}
u_{0,0}=\frac{8}{15} \sqrt{\pi}, \quad u_{2,0}=-\frac{16}{21} \sqrt{\frac{\pi}{5}}, \quad u_{2, \pm 2}=\frac{2}{7} \sqrt{\frac{6 \pi}{5}} \tag{20a}\\
u_{4,0}=\frac{8}{105} \sqrt{\pi}, \quad u_{4, \pm 2}=-\frac{2}{21} \sqrt{\frac{2 \pi}{5}} \tag{20b}
\end{gather*}
$$

Then we define the correlation functions

$$
\begin{align*}
g_{i j}(t) & =\int d \Omega \int d \Omega^{\prime} U_{i}(\Omega) G\left(\Omega, \Omega^{\prime}, t\right) U_{j}\left(\Omega^{\prime}\right)=\frac{1}{8 \pi^{2}} \sum_{l=0}^{\infty}(2 l+1) e^{-D l(l+1) t} \\
& \times \sum_{k, m=-l}^{l} \int d \Omega D_{k m}^{l}(\Omega) U_{i}(\Omega) \int d \Omega^{\prime} D_{k m}^{l *}\left(\Omega^{\prime}\right) U_{j}\left(\Omega^{\prime}\right) . \tag{21}
\end{align*}
$$

Since

$$
\begin{equation*}
\int d \Omega^{\prime} D_{k m}^{l *}\left(\Omega^{\prime}\right) U_{j}\left(\Omega^{\prime}\right)=\frac{8 \pi^{2}}{2 l+1} v_{l m}^{j} u_{l k}, \tag{22}
\end{equation*}
$$

we get

$$
\begin{equation*}
g_{i j}(t)=\sum_{l=0}^{4} \frac{8 \pi^{2}}{2 l+1} e^{-D l(l+1) t} \sum_{k=-l}^{l}\left|u_{l k}\right|^{2} \sum_{m=-l}^{l} v_{l m}^{i *} v_{l m}^{j}, \tag{23}
\end{equation*}
$$

where

$$
\begin{gather*}
\left|u_{0,0}\right|^{2}=\pi\left(\frac{8}{15}\right)^{2} \tag{24a}\\
\sum_{k=-2}^{2}\left|u_{2, k}\right|^{2}=\frac{\pi}{5}\left(\frac{16}{21}\right)^{2}+\frac{12 \pi}{5}\left(\frac{2}{7}\right)^{2}=\pi\left(\frac{8}{15}\right)^{2} \frac{215}{196} \tag{24b}\\
\sum_{k=-2}^{2}\left|u_{4, k}\right|^{2}=\pi\left(\frac{8}{105}\right)^{2}+\frac{4 \pi}{5}\left(\frac{2}{21}\right)^{2}=\pi\left(\frac{8}{15}\right)^{2} \frac{9}{196} \tag{24c}
\end{gather*}
$$

Finally, the functions $g_{i j}(t)$ are expressed in terms of the rotational diffusion coefficient D and the coefficients $v_{l m}^{A}$ and $v_{l m}^{B}$ as follows

$$
\begin{equation*}
g_{i j}(t)=(2 \pi)^{3}\left(\frac{8}{15}\right)^{2}\left(v_{00}^{i *} v_{00}^{j}+\frac{43}{196} e^{-6 D t} \sum_{m=-2}^{2} v_{2 m}^{i *} v_{2 m}^{j}+\frac{1}{196} e^{-20 D t} \sum_{m=-4}^{4} v_{4 m}^{i *} v_{4 m}^{j}\right) . \tag{25}
\end{equation*}
$$

According to our model, the dye orientation is normal to the nanoparticle surface for species A and tangent to it for species B. Therefore, the dipole orientation distributions for $i=A, B$ are

$$
\begin{equation*}
V_{i}(\chi, \zeta)=\frac{\delta\left(\chi-\chi_{i}\right)}{2 \pi \sin \chi} \tag{26}
\end{equation*}
$$

where $\delta\left(\chi-\chi_{i}\right)$ is the Dirac δ-function, $\chi_{A}=0$ and $\chi_{B}=\pi / 2$. In the case of A, the dipole is parallel the z-axis of the particle, and in the case of B, any orientation in the $x y$ plane is equally probable. Using Eqs. (14) and (26) gives

$$
\begin{equation*}
v_{l m}^{A}=\sqrt{\frac{2 l+1}{4 \pi}} P_{l}(1) \delta_{m, 0}, \quad v_{l m}^{B}=\sqrt{\frac{2 l+1}{4 \pi}} P_{l}(0) \delta_{m, 0} \tag{27}
\end{equation*}
$$

where $P_{l}(\cos \chi)$ are the Legendre polynomials, hence

$$
\begin{align*}
v_{00}^{A}=\frac{1}{\sqrt{4 \pi}}, & v_{20}^{A}=\sqrt{\frac{5}{4 \pi}}, \quad v_{40}^{A}=\sqrt{\frac{9}{4 \pi}} \tag{28}\\
v_{00}^{B}=\frac{1}{\sqrt{4 \pi}}, & v_{20}^{B}=-\frac{1}{2} \sqrt{\frac{5}{4 \pi}}, \quad v_{40}^{B}=\frac{3}{8} \sqrt{\frac{9}{4 \pi}} . \tag{29}
\end{align*}
$$

Then, we insert these values into Eq. (25) to get

$$
\begin{gather*}
g_{A A}(t)=2 \pi^{2}\left(\frac{8}{15}\right)^{2}\left(1+\frac{215}{196} e^{-6 D t}+\frac{9}{196} e^{-20 D t}\right), \tag{30a}\\
g_{B B}(t)=2 \pi^{2}\left(\frac{8}{15}\right)^{2}\left[1+\left(\frac{1}{2}\right)^{2} \frac{215}{196} e^{-6 D t}+\left(\frac{3}{8}\right)^{2} \frac{9}{196} e^{-20 D t}\right], \tag{30b}\\
g_{A B}(t)=g_{B A}(t)=2 \pi^{2}\left(\frac{8}{15}\right)^{2}\left[1-\left(\frac{1}{2}\right) \frac{215}{196} e^{-6 D t}+\left(\frac{3}{8}\right) \frac{9}{196} e^{-20 D t}\right] . \tag{30c}
\end{gather*}
$$

Another possibility for species B, not discussed here, is that the dipole could be oriented in the direction $+x$ or $-x$ with the same probability. Finally, the FCS autocorrelation function, $G^{F C S}(t)$, consists of products of $\left\langle\delta C_{i}(t) \delta C_{j}(0)\right\rangle$ given by Eq. (11) and $g_{i j}(t)$ given by Eq. (30), i.e.

$$
\begin{align*}
G^{F C S}(t) & \propto Q_{A}^{2}\left\langle\delta C_{A}(t) \delta C_{A}(0)\right\rangle g_{A A}(t)+2 Q_{A} Q_{B}\left\langle\delta C_{A}(t) \delta C_{B}(0)\right\rangle g_{A B}(t) \\
& +Q_{B}^{2}\left\langle\delta C_{B}(t) \delta C_{B}(0)\right\rangle g_{B B}(t) \tag{31}
\end{align*}
$$

Q_{A} and Q_{B} characterize the fluorescence of the dye in the states A and B, respectively, and the proportionality constant has been omitted in Eq. (31).
[1] Loman, A., Gregor, I., Stutz, C., Mund, M. and Enderlein, J. Measuring rotational diffusion of macromolecules by fluorescence correlation spectroscopy. Photochemical \& Photobiological Sciences 9, 627-636 (2010).
[2] Pieper, C. M. and Enderlein, J. Fluorescence correlation spectroscopy as a tool for measuring the rotational diffusion of macromolecules. Chem. Phys. Lett. 516, 1-11 (2011).
[3] Arfken, G. B., Weber, H. J. and Harris, F. E. Angular Momentum. Mathematical Methods for Physicists, seventh edition; Elsevier Inc.: Oxford, UK, 2012.
[4] Krichevsky, O. and Bonnet, G. Fluorescence correlation spectroscopy: the technique and its applications. Rep. Prog. Phys. 65, 251-297 (2002).

