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ROTATIONAL DIFFUSION COUPLED TO A FIRST-ORDER REACTION

A. The Model

We consider a spherical nanoparticle with a fluorescent dye attached to its surface. The
dye is represented by an electric dipole moment, the orientation of which can be normal or
tangential to the particle’s surface. We assume that the orientation of the dye can change
as a result of a chemical reaction

A⇄ B, (1)

where the A and B species represent nanoparticles with normal and tangential dye orienta-
tion, respectively. The reaction rate constants for the forward and backward reactions are
k+ and k−. We consider rotational diffusion coupled to reaction (1) via the reaction-diffusion
equation:

∂δcA
∂t

= −DĴ2δcA − k+δcA + k−δcB, (2a)

∂δcB
∂t

= −DĴ2δcB + k+δcA − k−δcB, (2b)

where D is the rotational diffusion coefficient and Ĵ2 is the square of the angular momentum
operator. δci, for i = A,B, depends on time and Euler angles ϕ, θ and ψ, denoted Ω for
brevity, as follows: δci(Ω, t) = P (Ω, t)δCi(t). P (Ω, t) is the probability density of finding the
particle’s principal axes rotated by Ω with respect to the laboratory frame, whereas δCi(t) =∫
dΩδci(Ω, t) is the deviation of the concentration of component i from its equilibrium value

C̄i. Then Eq. (2) is decomposed into the rotational diffusion equation [1, 2]
∂P

∂t
= −DĴ2P (3)

and the reaction equation
∂δCA

∂t
= −k+δCA + k−δCB, (4a)

∂δCB

∂t
= k+δCA − k−δCB. (4b)

The solution of Eq. (3) that satisfies the initial condition P (Ω, 0) is

P (Ω, t) =

∫
dΩ′G(Ω,Ω′, t)P (Ω′, 0), (5)

where

G(Ω,Ω′, t) =
1

8π2

∞∑
l=0

(2l + 1)e−Dl(l+1)t

l∑
k,m=−l

Dl
km(Ω)D

l∗
km(Ω

′), (6)
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is the Green’s function, and Dl
km(Ω) are the Wigner rotation matrices [3]. They satisfy

orthogonality relations∫ π

0

sin θdθ

∫ 2π

0

dϕ

∫ 2π

0

dψDl∗
km(ϕ, θ, ψ)D

l′

k′m′(ϕ, θ, ψ) =
8π2

2l + 1
δl,l′δk,k′δm,m′ . (7)

When t = 0, the Green’s function is equal to the Dirac function δ(Ω,Ω′).
The solution of Eq. (4) that satisfies the initial conditions δCA(0) and δCB(0) is

δCA(t) =
1

R

[(
k− + k+e

−Rt
)
δCA(0) + k−

(
1− e−Rt

)
δCB(0)

]
, (8a)

δCB(t) =
1

R

[
k+
(
1− e−Rt

)
δCA(0) +

(
k+ + k−e

−Rt
)
δCB(0)

]
, (8b)

where R = k+ + k− is the chemical relaxation rate. Finally, correlation functions, defined
as ⟨δci(Ω, t)δcj(Ω′, 0)⟩, are expressed as follows

⟨δci(Ω, t)δcj(Ω′, 0)⟩ = G(Ω,Ω′, t)⟨δCi(t)δCj(0)⟩, (9)

where ⟨ ⟩ is the ensemble average. Concentration fluctuations depend on time and the
position vector and are subject to Poisson statistics. Since the initial positions of different
molecules are not correlated, zero-time correlations are

⟨δCi(r, 0)δCj(r
′, 0)⟩ = C̄iδijδ(r − r′), (10)

where C̄i is the average concentration [4]. The ⟨δCi(r, t)δCj(r
′, 0)⟩ correlations contribute

to the autocorrelation function for translational diffusion, which is much slower than ro-
tational diffusion. Therefore, for the rotational diffusion time scale, we can replace the
local concentration fluctuations with their average over the observation volume V , i.e.
δCi(t) = V −1

∫
V
d3rδC(r, t). Consequently, Eq. (10) should be replaced with the initial

condition ⟨δCi(0)δCj(0)⟩ = C̄iδij/V . Using the last relation in Eq. (8) gives the auto-
correlation and cross-correlation functions

⟨δCA(t)δCA(0)⟩ =
C̄A

V R

(
k− + k+e

−Rt
)
=

C̄A

V (1 +K)

(
1 +Ke−Rt

)
, (11a)

⟨δCB(t)δCB(0)⟩ =
C̄B

V R

(
k+ + k−e

−Rt
)
=

C̄B

V (1 +K)

(
K + e−Rt

)
, (11b)

⟨δCA(t)δCB(0)⟩ =
C̄B

V R
k−
(
1− e−Rt

)
=

C̄B

V (1 +K)

(
1− e−Rt

)
, (11c)

⟨δCB(t)δCA(0)⟩ =
C̄A

V R
k+
(
1− e−Rt

)
=

C̄B

V (1 +K)

(
1− e−Rt

)
, (11d)

where K = k+/k− is the reaction (1) equilibrium constant.
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B. FCS correlation function

We need to calculate the correlation functions resulting from rotational diffusion of species
A and B to apply the model described in Sec. A for measurements using fluorescence corre-
lation spectorscopy (FCS). It is convenient to define A and B in terms of two different dipole
orientation distributions, VA(χ, ζ) and VB(χ, ζ), where the polar angle χ and azimuthal angle
ζ are detemined in the system of the particle’s principal axes. In general, Vi(χ, ζ), i = A,B,
can be expanded in spherical harmonics Ylm(χ, ζ):

Vi(χ, ζ) =
∞∑
l=0

l∑
m=−l

vilmYlm(χ, ζ), (12)

where

Ylm(χ, ζ) = (−1)m

√
(2l + 1)(l −m)!

4π(l +m)!
Pm
l (cosχ)eimζ , (13)

if m ≥ 0 and Ylm(χ, ζ) = (−1)mY −m∗
l (χ, ζ) if m < 0. Hence, the expansion coefficients are

vilm =

∫ π

0

sinχdχ

∫ 2π

0

dζVi(χ, ζ)Y
∗
lm(χ, ζ). (14)

In order to express Vi in the lab frame, spherical harmonics must be rotated by Ω, which
gives

Vi(χ, ζ|Ω) =
∞∑
l=0

l∑
m=−l

vilm

l∑
k=−l

Dl
km(Ω)Ylk(χ, ζ). (15)

We then consider the probabilities of excitation and detection of a photon with polarization
parallel (∥) or orthogonal (⊥) to the excitation polarization, where the latter is oriented
along the x-axis of the lab frame. These probabilities are proportional to the functions
U

∥
i (Ω) and U⊥

i (Ω), respectively, where [1, 2]

U
∥
i (Ω) =

∫ π

0

sinχdχ

∫ 2π

0

dζ sin4 χ cos4 ζVi(χ, ζ|Ω), (16a)

U⊥
i (Ω) =

∫ π

0

sinχdχ

∫ 2π

0

dζ sin4 χ cos2 ζ sin2 ζVi(χ, ζ|Ω). (16b)

In the case of non-polarised detection studied in this work, U∥
i and U⊥

i are replaced by their
sum

Ui(Ω) = U
∥
i (Ω) + U⊥

i (Ω) =

∫ π

0

sinχdχ

∫ 2π

0

dζ sin4 χ cos2 ζVi(χ, ζ|Ω). (17)
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Inserting Eq. (15) into Eq. (17) gives

Ui(Ω) =
∞∑
l=0

l∑
m=−l

vilm

l∑
k=−l

ulkD
l
km(Ω), (18)

where
ulk =

∫ π

0

sin5 χdχ

∫ 2π

0

dζ cos2 ζYlk(χ, ζ). (19)

The only non-zero coefficients are

u0,0 =
8

15

√
π, u2,0 = −16

21

√
π

5
, u2,±2 =

2

7

√
6π

5
, (20a)

u4,0 =
8

105

√
π, u4,±2 = − 2

21

√
2π

5
. (20b)

Then we define the correlation functions

gij(t) =

∫
dΩ

∫
dΩ′Ui(Ω)G(Ω,Ω

′, t)Uj(Ω
′) =

1

8π2

∞∑
l=0

(2l + 1)e−Dl(l+1)t

×
l∑

k,m=−l

∫
dΩDl

km(Ω)Ui(Ω)

∫
dΩ′Dl∗

km(Ω
′)Uj(Ω

′). (21)

Since ∫
dΩ′Dl∗

km(Ω
′)Uj(Ω

′) =
8π2

2l + 1
vjlmulk, (22)

we get

gij(t) =
4∑

l=0

8π2

2l + 1
e−Dl(l+1)t

l∑
k=−l

|ulk|2
l∑

m=−l

vi∗lmv
j
lm, (23)

where
|u0,0|2 = π

(
8

15

)2

, (24a)

2∑
k=−2

|u2,k|2 =
π

5

(
16

21

)2

+
12π

5

(
2

7

)2

= π

(
8

15

)2
215

196
, (24b)

2∑
k=−2

|u4,k|2 = π

(
8

105

)2

+
4π

5

(
2

21

)2

= π

(
8

15

)2
9

196
. (24c)

Finally, the functions gij(t) are expressed in terms of the rotational diffusion coefficient D
and the coefficients vAlm and vBlm as follows

gij(t) = (2π)3
(

8

15

)2
(
vi∗00v

j
00 +

43

196
e−6Dt

2∑
m=−2

vi∗2mv
j
2m +

1

196
e−20Dt

4∑
m=−4

vi∗4mv
j
4m

)
. (25)
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According to our model, the dye orientation is normal to the nanoparticle surface for species
A and tangent to it for species B. Therefore, the dipole orientation distributions for i = A,B

are

Vi(χ, ζ) =
δ(χ− χi)

2π sinχ
, (26)

where δ(χ− χi) is the Dirac δ-function, χA = 0 and χB = π/2. In the case of A, the dipole
is parallel the z-axis of the particle, and in the case of B, any orientation in the xy plane is
equally probable. Using Eqs. (14) and (26) gives

vAlm =

√
2l + 1

4π
Pl(1)δm,0, vBlm =

√
2l + 1

4π
Pl(0)δm,0, (27)

where Pl(cosχ) are the Legendre polynomials, hence

vA00 =
1√
4π
, vA20 =

√
5

4π
, vA40 =

√
9

4π
(28)

vB00 =
1√
4π
, vB20 = −1

2

√
5

4π
, vB40 =

3

8

√
9

4π
. (29)

Then, we insert these values into Eq. (25) to get

gAA(t) = 2π2

(
8

15

)2(
1 +

215

196
e−6Dt +

9

196
e−20Dt

)
, (30a)

gBB(t) = 2π2

(
8

15

)2
[
1 +

(
1

2

)2
215

196
e−6Dt +

(
3

8

)2
9

196
e−20Dt

]
, (30b)

gAB(t) = gBA(t) = 2π2

(
8

15

)2 [
1−

(
1

2

)
215

196
e−6Dt +

(
3

8

)
9

196
e−20Dt

]
. (30c)

Another possibility for species B, not discussed here, is that the dipole could be oriented in
the direction +x or −x with the same probability. Finally, the FCS autocorrelation function,
GFCS(t), consists of products of ⟨δCi(t)δCj(0)⟩ given by Eq. (11) and gij(t) given by Eq.
(30), i.e.

GFCS(t) ∝ Q2
A⟨δCA(t)δCA(0)⟩gAA(t) + 2QAQB⟨δCA(t)δCB(0)⟩gAB(t)

+ Q2
B⟨δCB(t)δCB(0)⟩gBB(t). (31)
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QA and QB characterize the fluorescence of the dye in the states A and B, respectively, and
the proportionality constant has been omitted in Eq. (31).
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