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Definition of angle order parameter

Figure S1: Schematics of a triplet of particles that are mutually neighbors within a metastable state (left and

middle), and its corresponding sterically optimal packing. (right)

To quantify structural closeness of particle packings to the reference state of the sterically optimal pack-

ing, we employ an angle order parameter. For each particle j with n j neighbors determined by the radical

tessellation, all pairs of neighboring particles, denoted as k and l , are selected, where particles k and l are

also neighbors. For every triplet of particles j , k, and l , the angles formed by a line connecting the centers of

particles j and k and another line connecting the centers of particles j and l , θ j kl , are measured (Fig. S1). A

configuration in which these particles mutually touch each other serves as a reference configuration for the

sterically optimal packing. In this optimal packing, the angle between the three particles, θ j kl ,0, follows di-

rectly from the particle sizes. The angle order parameter for each particle is computed as the average of the

absolute difference between θ j kl and θ j kl ,0, namely Θ j = 1
n j

∑
k,l

∣∣θ j kl −θ j kl ,0
∣∣. The angle order parameter

for the particle packing is defined as the average of the angle order parameters of individual particles.

Θ= 1

N

N∑
j=1
Θ j = 1

N

N∑
j=1

1

n j

∑
k,l

∣∣θ j kl −θ j kl ,0
∣∣ . (1)
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Impact of size distribution on the effectiveness of the algorithm

Figure S2: (a) Correlation between energy level of metastable states at φ = 1 and their corresponding critical

packing fraction, φc . Correlations between φc and structural measures, (b) Hexagonal orientation order parameter

|Ψ6|, (c) coefficient of variation of radical tessellation topology cn , and (d) the angle order parameterΘ. In all plots,

symbol color distinguishes polydispersity by coefficient of area variation cA (see (a)). N = 1024 for all data.

To assess the impact of size distribution shapes and widths on the algorithm’s efficiency, three differ-

ent distributions - Gamma, Log-normal, and uniform distributions - are tested across a size polydispersity

range of 0.2 < cA < 0.5. Regardless of the distribution shape and width, the algorithm robustly generates

a broad range of critical packing fractions, φc (Fig. S2a). While conventional structural measures such as

|Ψ6| and cn show weak correlations with φc (Fig. S2b,c), the angle order parameter Θ is strongly predictive

of φc (Fig. S2d), suggesting that closeness to sterically optimal packing significantly influences the jamming

point.
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Particle displacement during the annealing process

Figure S3: (a) Mean normalized displacement of particles in overjammed packings during the annealing protocol

by simultaneous swap. (b) Mean normalized particle size change in overjammed packing during the annealing

protocol by simultaneous swap.

The algorithm we propose here performs a single simultaneous size swap, which transitions high energy

metastable states to new metastable states of adjustable energy level (the energy of these final metastable

states being controlled by zn). This annealing process involves adjustments of particle positions following

the size swap. To quantify the extent of particle motion, we compute the normalized displacement between

an initial and a final metastable state following the simultaneous swap and energy minimization (Fig. S3a).

Regardless of zn , the average normalized displacement remains significantly less than 1 (less than a typical

particle radius in absolute terms), indicating that local adjustments of particle positions are sufficient to

reduce the energy of metastable states from the highest to any arbitrary values, even to the lowest energy

level. The magnitude of particle size change during the size swap remains small across the entire range of

zn (Fig. S3b). These slight size changes result in small particle displacements without disrupting the initial

topology.

3



Radial distribution function of critical jamming states of various φc

Figure S4: Radial distribution (pair correlation) function of critical jamming states at different φc , showing no

discernible differences. N = 1024 for all data.

The radial distribution function, g (r /2R0) is computed to examine the distinct structural features of crit-

ical jamming states across various φc . While the first peak value of g (r /2R0) slightly increases with increas-

ingφc , overall, g (r /2R0) exhibits minimal variation from the lowestφc to the highest φc (Fig. S4). Therefore,

we conclude that the radial pair correlation function of particle positions is unsuitable for distinguishing

critical jamming states across various φc .

4



Efficiency of the annealing algorithm for different φ

Figure S5: Correlation between average connectivity of network, zn , and metastable state energy εr for different

volume fraction φ.

Although the algorithm is primarily applied to generate metastable states of distinct energy levels at φ=
1 in this work, it can also be utilized to access a broad range of MS energies for arbitrary φ>φc . To evaluate

the effectiveness of the algorithm at differentφc , it is tested for four different overjammed packing fractions,

φ = 0.92,0.94,0.96, and 0.98. For each packing fraction, the algorithm consistently generates metastable

states covering the entire range from the highest to the lowest energy level, with the network coordination

number zn remaining a valid control parameter (Fig. S5).
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Displacement during the decompression process

Figure S6: (a) Two examples of the decompression of packings for low (left) and high (right) φc , with arrows

indicating displacements along the decompression. (b) Mean normalized displacement of particles during the

decompression process for different initial configurations of final φn after the decompression. N = 400 for all data.

As a supplementary displacement measure for the compression process outlined in the manuscript, we

also calculate the normalized displacement during the decompression process from φ= 1 to φc . Similar to

the compression process, high energy metastable states (equivalently low-φc structures) exhibit high levels

of displacement during the decompression process while low energy metastable states (equivalently high-

φc structures) show small displacements, much smaller than a typical particle size. This further supports

the conclusion that low-energy MS robustly maintain their structures during mechanical perturbations,

whereas high energy MS do not.
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Displacement during cyclic pure shear deformation

Figure S7: Mean displacement of particles after one cyclic pure shear deformation as a function of strain ampli-

tude γ for low-φc and high-φc critically jammed packings. This figure shows results for individual samples rather

than the binned averages of Fig. 5f of the main text. N = 400 for all data.

Low-φc critically jammed states exhibit marginal stability under pure shear deformation while high-φc

critically jammed states exhibit prolonged stability up to a finite shear amplitude γ, indicating the resilience

feature of dense polydisperse packings. The distinction between low-φc and high-φc states persists even

for large γ after irreversible rearrangements of particles: many of the individual high-φc states maintain

a new configuration after these rearrangements over a finite range of even higher γ while low-φc states

continuously transition to different states, resulting in a linear increase of mean displacement over the

entire range of γ (Fig. S7).
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Impact of adjusting the size distribution on critical packing fraction

Figure S8: (a) Schematic of a representative locally optimal packing for three particles with a given size variation

∆R. (b) Critical packing fractions, φc , for structures retaining the modified set of particle sizes after network energy

minimization (red circles, system size N = 400). Many samples approach and exceed the monodisperse crystalline

fraction φhex = 0.9069. . . for significantly large size polydispersity. The gray dashed line indicates the theoretical

estimate of the maximum φc based on the representative configuration shown in (a).

While our primary focus in this work is on the densest packings of a given size distribution (i.e. a fixed set

of particle sizes {Ai }), even higher critical packing fractionsφc of polydisperse disk packings can be achieved

if adjustments to the size distribution are permitted. To investigate this, we adapt the original algorithm to

retain the adjusted set of sizes after the network energy minimization, {A′
i }, instead of reassigning the fixed

particle sizes {Ai }, in the order of {A′
i }. This modification results in a subtly different size distribution from

the original one. When applying this algorithm for zn = 6, we observe a significant increase in the accessible

range of φc compared to the original cases (Fig. S8b).

This result is understandable as the adjusted sizes {A′
i } specifically optimize local packing (for zn = 6,

these are sizes equivalent to those constructed by the Circle Packing algorithm). To estimate a theoretical

limit φc,max for a given cA, we consider a sterically optimal triplet packing (Fig. S8a). This packing con-

sists of one particle with an average size R0, another particle with size R− = R0 −∆R = R0(1−∆r ), and the

other particle with size R+ = R0 +∆R = R0(1+∆r ). Assuming a Gamma distribution of particle sizes, the

normalized deviation ∆r can be estimated in terms of the coefficient of variation of particle area, cA, as

follows:

∆r =
√

1− f (cA)2

f (cA)
, (2)

f (cA) = cAΓ
(
c−2

A +1/2
)

Γ(c−2
A )

. (3)

The packing fraction of this optimal packing is calculated as the ratio of the sum of disk sectors within the

triangle formed by joining the particle centers to the size of the triangle (Fig. S8a). Expanding the angles of

8



the triangle for small ∆r , we can derive an estimate of φc,max , namely

φc,max(cA) = π+ (2π
3 −2

p
3
)

(∆r )2

2
√

3(1− (∆r )2)
(4)

This upper-bound estimate is displayed in Fig. S8b and is consistent with the data. We emphasize that such

particle-size adjustments are not typically accessible in practical packing problems, where a given set of

particles is to be jammed. All results in the main text find rearrangements of such given sets of particle sizes

{Ai }, for various distribution shapes and widths.
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