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S1 Additional Methods Details

S1.1 Particle and Inter-particle Interactions Details

The triangular particles are composed of fifteen, partially overlapping circular subparticles

that are rigidly held together. Each triangular edge is composed of six subparticles, the

outermost of which serve as the vertices of the triangular particle and are shared with the

neighboring edge. The triangular particles have an edge length of 1σ, while the subparticles

have a diameter of σLJ = 0.25σ, where σ is the lengthscale of the system in reduced units.

The subparticles on two edges of the equilateral triangle are assigned type A, while

the subparticles on the third edge (including their vertices) are assigned type B. The type
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A - type A subparticles of differing triangular particles interact via a Lennard-Jones (LJ)

potential, which is illustrated in Figure 1a, and defined as:

VLJ(rij) = 4ϵij[(
σLJ

rij
)12 − (

σLJ

rij
)6] + c rij < rc, (S1)

where rij is the distance between the centers of an ij-pair, σLJ is the distance in which the

potential goes to zero, and ϵ is the depth of the potential well. For static simulations, ϵ

is held constant throughout the simulation, while ϵ is oscillated in time during oscillatory

simulations as detailed in the main text. c is the value necessary to shift the potential so that

VLJ(rc) = 0. For type A subparticles, σLJ defines the spatial extent of the LJ interaction,

and the cutoff distance is set so that rc = 2.5σLJ.

The type B - type B and type A - type B subparticles interact via the Weeks-Chandler-

Andersen potential,S1 which truncates and shifts the LJ potential given in Equation S1 to

only include the repulsive portion of the curve where ∂Uij(r)

∂r
< 0. In order to truncate and

shift the potential, we set ϵAB = ϵBB = 1.0 and rc =21/6σLJ.

S1.2 Simulation Details

All simulations are performed using Langevin dynamics, as implemented in LAMMPS.S2

Simulations started with a randomly distributed system of 150 triangular particles in a

periodic box of size L x L with no particle overlap. Simulations with a volume fraction of ϕ

= 0.1 were done in a box with dimensions 25.48σ x 25.48σ, while simulations at a volume

fraction of ϕ = 0.005 occurred in a box with dimensions of 113.98σ x 113.98σ.

To relax the system, initial velocities were assigned and the simulation was allowed to

equilibrate for 1,000,000 steps (5,000τ). During this process, all subparticles interacted via

the WCA potential, as this ensures there is no particle overlap and establishes an equilibrated

random distribution of triangles. After equilibration, the type A attractive interactions were

turned on, and the simulation was allowed to proceed for 30,000,000 steps (150,000 τ).
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Simulations were evolved in time using the velocity-Verlet algorithm with a timestep of

0.005τ . To mimic solvent dynamics and maintain a constant temperature, the Langevin

thermostat was used. The Langevin equation is defined as

m
dv

dt
= −γv − dU

dr
+ η(t). (S2)

In addition to the conservative force, −dU
dr

, that arises from the inter-particle interactions,

each triangular particle experiences a friction force and a random force. The friction force is

defined as −γv, where γ tunes the strength of the friction and v is the velocity describes the

frictional interaction between the implicit solvent and the particles. In LAMMPS, we set γ

by the damp parameter, with damp = m
γ
, where m is mass of the triangular body.S2 We set

damp = 0.35 in reduced units. The random force, η(t) in Equation S2, mimics the random

bumps and kicks the solvent atoms will provide to the subparticle at temperature T . The

LAMMPS code was modified so that it used a Gaussian random number for η(t) to ensure

the appropriate fluctuation statistics.

S1.3 Data Analysis Details

Once the attractive LJ interactions have been turned on, atom positions are recorded every

10τ to monitor the progression of the self-assembly process. To have an even sampling while

calculating the final yields, the final 7,500τ of each simulation is sampled every 15τ in the

static system.

In the temporally variant system, however, sampling the system with a constant interval

will result in uneven sampling of the system as it switches between ϵmin and ϵmax. To ensure

even sampling between the ϵmin and ϵmax half-cycles during the calculation, the last 7,500τ of

the simulations is divided into slices of 150τ and ten evenly spaced snapshots from the first

complete period of each slice were recorded. For periods equal to or shorter than 0.05τ (ten

steps), every step of the first complete period of each slice was recorded to evenly monitor
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time within the ϵmin and ϵmax half-cycles.

S1.3.1 Capsid Counting

To determine the number of assembled capsids, the locations of the type A subparticles that

are positioned at the attractive vertex of each triangular particle are compared to the attrac-

tive vertices of the other nearby triangular particles. We consider two triangular particles to

be part of a potential capsid if the distance between the centers of their attractive vertices

are less than 0.85σ. A distance less than 0.85σ was determined to encompass the fluctua-

tions possible in the capsid shape. If any subparticle tip is found to have five neighboring

subparticle tips within a distance of 0.85σ, the capsid is considered assembled.

S1.3.2 Aggregate Counting

We also analyze the number of other aggregate structures to better understand the overall

assembly process. After determining the number of capsids within the system, the particles

that are not within assembled capsids are analyzed to determine what size aggregate they

are assembled into. We compare the three vertices of each triangular particle with the three

vertices of the nearby particles to determine if the maximum length between any two vertices

is less than 2.1σ. A maximum distance of 2.1σ ensures that two particles are assembled, but

accounts for all configurations the particles can take in the snake-like aggregates. Aggregates

are then built by noting which particles belong to each aggregate.

S2 Temperature in the intermediate period regime

Langevin Dynamics is utilized to move the simulation forward in time and maintain a con-

stant temperature. In LAMMPS,S2 a Langevin parameter, damp = m
γ

is defined in units

of τ and determines how rapidly the temperature is relaxed to the target temperature.S2

For oscillation periods similar to the timescale of the damp parameter (0.35τ), the average
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temperature of the simulation is higher than the target temperature of 1.0. Figure S1 shows

the average temperatures observed in the simulations over the last 5,000τ for a range of

oscillation periods as compared to the average temperature for the static potential system.

Temperatures at the fast oscillation limit and at oscillations periods longer than 10τ are

comparable to those in the static system, but periods from 0.04τ to 5τ deviate more than

5% from the target temperature. To standardize our results for an average ϵ value over the

full range of oscillation periods, we report ϵavg in units of kBT (obs), where T (obs) is the average

observed temperature during the run. This rescaling was only done for Figure 5a&b as no

other figures include results from oscillation periods between 0.04τ to 5τ .

Figure S1: Average observed temperatures at ϵ = 1.25kBT . The average observed
temperature and its standard deviation over the last 5,000τ of the simulation is plotted
vs. the oscillation period τosc. The average observed static temperature is represented by
a black dashed horizontal line, and the grey shaded region indicates its standard deviation.
We present the average observed temperatures at ϵ = 1.25kBT for an amplitude of 0.4kBT
as this value is closest to the median ϵ value observed in Figure 5b.

S3 Kinetic traces of structure formation within the static

system from ϵ = 0.75kBT to ϵ = 2.15kBT .

In Figure S2 we expand Figure 2b to include additional interaction strengths.
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Figure S2: Formation of capsids and aggregates vs. time for different ϵ values
in the non-oscillatory system. The formation of various aggregate and capsid species is
plotted here vs. time for different ϵ values over a simulation time of 150,000τ . The different
aggregate sizes are indicated by the color bar, and the kinetic traces are the average of three
independent trajectories.

S4 Mean square displacement and rotational relaxation

of a single triangular particle.

We examine the interplay between the oscillation period and the time it takes to diffuse

characteristic length-scales that characterize important energetic and structural changes. To

quantify particle diffusion, we calculate the mean square displacement for a lone triangle

and plot it vs. simulation time in Figure S3a. Additionally, we calculate the rotational

S-6



autocorrelation function and plot it against simulation time in Figure S3b. The timescales

needed to traverse characteristic distances and rotation are presented in Table 1.

Figure S3: Mean square displacement and orientational autocorrelation function
for a single particle. a)The mean square displacement is plotted vs. simulation time for
a single triangular particle. Based on the linear fit line in green and the Einstein relation,
the diffusion coefficient was calculated to be D = 0.024 ± 0.007σ2/τ . b) The rotational
autocorrelation function for a single triangular particle fit with N(t) = N0exp(−t/τ), where
τ = 7.103τ , and describes the time to decay to 1/e ∗ N0. The mean square displacement
and rotational autocorrelation function were both calculated from 18 individual trajectories
with a recording interval of 0.05τ .

S5 Time averaging in the fast oscillation limit.

Based on earlier work theoretical work by Szleifer and coworkers,S3,S4 the effective potential

in our system can be described at the fast oscillation limit by a static LJ potential with a well

depth of ϵavg, which is simply the time-dependent ϵ value averaged over a single oscillation

period.

To show this correspondence, we first write the effective potential at the fast oscillation

limit as:

U eff(r) =

∫ τosc

0

U(r, ϵ(t))dt, (S3)

where U(r, ϵ(t)) is the time dependent potential energy of the system at time t, which is

integrated over a single oscillation period, τosc.S3 We can then substitute in the full LJ

potential with a time dependent ϵ on the right hand side, such that:
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U eff(r) =

∫ τosc

0

4ϵ(t)[(
σ

r
)12 − (

σ

r
)6]dt. (S4)

At the fast oscillation limit, any changes to r during a single oscillation period are small. As

a result, Equation S4 becomes

U eff(r) = 4[(
σ

r
)12 − (

σ

r
)6]

∫ τosc

0

ϵ(t)dt

= 4 < ϵ >τosc [(
σ

r
)12 − (

σ

r
)6],

(S5)

where < ϵ >τosc is the time averaged attraction strength over a single period, which we term

ϵavg.

Finally, since in our simulations, half the oscillation period is spent at ϵmax and half at

ϵmin,

⟨ϵ⟩τosc =
ϵmax + ϵmin

2
= ϵavg. (S6)

S6 Kinetic traces of structure formation with both static

and oscillatory interactions.

To investigate in more detail how assembly mechanisms change with oscillatory interactions,

in Figure S4 we compare the kinetic traces of the aggregate species in the static system

(Column 1) to kinetic traces in the oscillatory system at three different periods. An oscillation

period of 0.02τ , which is within the fast oscillation limit, results in very similar assembly

to the non-oscillatory system. Intermediate periods, shown in Columns 3 and 4, however,

result in very different aggregate assembly kinetics.
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Figure S4: Formation of aggregate species over time for different oscillation peri-
ods. The formation of various aggregate species averaged over three indepedent trajectories
is shown over time for different ϵ values and oscillation periods at an amplitude of 0.4kBT .
Column 1 shows results from the static potential system, Column 2 shows results from the
fast oscillation limit, and Columns 3 and 4 show results from two different intermediate
periods. Different assembled structures are tracked over the simulation as indicated by the
color bar.
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