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In the supplementary information (SI) we provide the
theoretical basis for the computation of the normal and
resonance modes of the swimmer. We also expand on
the technical details regarding the coarse-graining for-
mulation and contact network characterization. Finally,
we provide some complementary plots.

Appendix A: Normal and resonance modes of the
swimmer

HEAD
 

Fig. S1. Representation of the linear chain of coupled oscilla-
tors.

To find the resonance modes of the swimmer, we use

the undamped model to calculate the natural modes and
then adjust the frequencies considering the damping ratio
[1]. Thus, we can conceptualize the swimmer as a set of
seven masses connected by six springs (Fig. S1). The
masses m are all equal except for the mass of the head,
which is mh = 7m. The spring constants k ≡ kB are all
equal. Let x⃗ = (x1, x2, · · · , x7) be the displacements of
the masses from the equilibrium position. The equations
of motion for xi are:

mh ẍ1 = −k(x1− x2)

mẍ2 = −k(x2− x1)− k(x2− x3)

mẍ3 = −k(x3− x2)− k(x3− x4)

...

mẍ7 = −k(x7− x6)

(1)

This system can be written in matrix form as:


mh 0 0 · · · 0
0 m 0 · · · 0
0 0 m . . . 0
...

...
...

. . .
...

0 0 0 · · · m

 d2

dt2


x1

x2

...

...
x7

+


k −k 0 · · · 0
−k 2k −k · · · 0
0 −k 2k · · · 0
... 0 0

. . . −k
0 0 0 −k k




x1

x2

...

...
x7

 =


0
0
...
...
0

 (2)

or, more generally,

M
d2x⃗

dt2
+Kx⃗ = 0 (3)

where M and K are the mass and stiffness matrices, re-
spectively. Since we are interested in finding harmonic
solutions for x⃗, we can assume that the solution has the

form x⃗ = X⃗ sin(ωt), and substitute it into Eq. (3):

−MX⃗ω2sin(ωt) +KX⃗sin(ωt) = 0 → (4a)

→ KX⃗ = ω2MX⃗ (4b)

The scalar values λn that satisfy a matrix equation
Ku⃗ = λMu⃗ are commonly known as the generalized

eigenvalues of the equation, and are directly associated
with the natural frequencies through ωn

0 =
√
λn. We

have used MATLAB to solve the system for different val-
ues of kB . The frequencies of the first and second normal
modes, ωn

0 , and the corresponding resonance modes, ωn
r ,

are listed in Table I. Note that to obtain the ordinary
frequencies f , we must divide ω by 2π.

Appendix B: Coarse-graining calculation

We obtain macroscopic continuum fields by ap-
plying an integrable coarse-graining function φ(r⃗, t).
Specifically, we have opted for a truncated two-
dimensional (2D) Gaussian function φ[r⃗ − r⃗i(t)] =
A−1

ω exp
[
−(r − ri)

2/2ω2
]
, where ω, the Gaussian rms
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kB ξ
Mode
n

wn
0 wn

r = wn
0

√
1− 2ξ2

100 0.29
1 26.37 23.96
2 62.59 56.91

150 0.24
1 32.30 30.38
2 76.66 72.09

200 0.20
1 37.30 35.65
2 88.52 84.60

500 0.13
1 58.98 57.95
2 139.96 137.51

TABLE I. The first and second normal modes (ωn
0 ) as well

as the corresponding resonance modes (ωn
r ) of the swimmer.

Different values of kB have been used. The damping ratio (ξ)
corresponding to each kB is provided in the second column.
In all cases, the condition of significantly underdamping (ξ <
1/

√
2) is fulfilled, and the resonance frequency is well defined.

width, has been selected to be equal to the the mean
grain radius ⟨rG⟩ of the bulk. This choice strikes a bal-
ance between being too small (which would not smooth
out as desired) and being too large (which would require
significant corrections [2]). Here, A−1

ω is the normaliza-
tion constant ensuring that φ is normalized in the interval
[−rc, rc], with rc = 3ω the cut-off length. Consequently,
the 2D solid fraction field Φ of the system is given at time
t as:

Φ(r⃗, t) = AP

N∑
i=1

φ[r⃗ − r⃗i(t)] (5)

where r⃗i is the position of each single grain of the granular

bed and Ap is the area of the grain. The velocity field V⃗
is calculated in a similar way:

V⃗ (r⃗, t) = AP

N∑
i=1

v⃗i φ[r⃗ − r⃗i(t)]/Φ(r⃗, t) (6)

where v⃗i is the instantaneous velocity of particle i.
Following the approach outlined in [3, 4], we intro-

duce the macroscopic stress field σ, which can be decom-
posed into a kinetic stress field (σK) and a contact stress
field (σC). The kinetic stress σK takes into considera-
tion the velocity fluctuations with respect to the mean

velocity field V⃗ (r⃗, t). These fluctuations are expressed as

v⃗ ∗
i (r⃗, t) = v⃗i(r⃗, t) − V⃗ (r⃗, t). The kinetic stress tensor is
thus defined as:

σK(r⃗, t) =

N∑
i=1

v⃗ ∗
i ⊗ v⃗ ∗

i φ[r⃗ − r⃗i(t)]. (7)

where ⊗ is the dyadic product. It is generally accepted
that the trace of the kinetic stress, the so called kinetic

pressure pK(r⃗, t), is proportional to the granular temper-
ature [5, 6]. Defined as pK(r⃗, t) = Tr(σK(r⃗, t)), it repre-
sents a measurement of the grain fluctuations respect to
the mean velocity field.
The contact stress tensor σC is calculated using the

interaction forces F⃗ij and branch vectors r⃗ij through the
line integral of φ(r⃗, t) along r⃗ij , as follows:

σC(r⃗, t) =

N∑
i=1

Nc∑
j=1

r⃗ij ⊗ F⃗ij

∫ 1

0

φ[r⃗ − r⃗i(t) + sr⃗ij ] ds (8)

Note that this process applies individually to every sin-
gle contact Nc of a particle i. As for the kinetic stress
case, we can also define the contact pressure pC(r⃗, t) as
pC(r⃗, t) = Tr(σC(r⃗, t)) [5]. Finally, the total pressure P
is determined by:

P (r⃗, t) =
pK(r⃗, t) + pC(r⃗, t)

2
(9)

Under stationary conditions, it is possible to character-
ize all these quantities by computing their mean fields.
These mean fields are obtained by averaging the fields
over multiple time steps in each simulation, denoted by

Φ(r⃗) = ⟨Φ(r⃗, t)⟩, V⃗ (r⃗) = ⟨V⃗ (r⃗, t)⟩, σK(r⃗) = ⟨σK(r⃗, t)⟩,
and σC(r⃗) = ⟨σC(r⃗, t)⟩.

Appendix C: Contact Network

The fabric tensor characterizes the contact network by
analyzing the branch vectors r⃗ij [7]. For systems with
disk-like particles, branch vectors are defined for particle
pairs in contact (i.e. when |r⃗ij | ≤ Rij , with rij denoting
the inter-particle distance and Rij representing the sum
of their radii). The fabric tensor R is then defined as:

R =

Nc∑
i,j

r⃗ij ⊗ r⃗ij (10)

where the summation takes into account all contacts Nc

between pairs of particles (i, j). The eigenvalues R1 and
R2 of this tensor allow us to calculate the average number
of contacts per particle Z = R1+R2, and the anisotropy
of the contact network defined as ρ = (R1 −R2)/Z.
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Appendix D: Extended Figures

Determination of µeff
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Fig. S2. Mean squared error (MSE) calculated for the curves
obtained in Fig. 3a (main text). The curve has a minimum
at µeff = 0.22 , the value used to validate the model in Fig.
3b (main text).

Appendix E: Supplementary Movies

• Movie S1: Simulation in the frictionless granular

medium (i.e. F⃗F
i = 0) at an oscillation frequency

f = 4Hz.

• Movie S2: Simulation in the frictionless granular

medium (i.e. F⃗F
i = 0) at an oscillation frequency

f = 9Hz.

• Movie S3: Simulation in the frictionless granular

medium (i.e. F⃗F
i = 0) at an oscillation frequency

f = 15Hz.

System-size and grain-size effect
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Fig. S3. Swimming speed dependence on frequency for the
frictionless system (i.e., F⃗F

i = 0) changing (a) average grain
size ⟨dG⟩ and (b) system size Ly as indicated in the leg-
end. The vertical solid lines represent the second resonance
mode. The system investigated in the main text corresponds
to ⟨dG⟩ = 1.5 mm and Ly = 50 mm. The error bars have been
calculated based on the standard error with a confidence level
of 95%.

Swimmer size effect

(a) (b)

Fig. S4. Swimming speed dependence on frequency for the
frictionless system (i.e., F⃗F

i = 0). In (a), the length of the
swimmer Ls is changed while keeping constant Lx = 100mm
and Ly = 50mm. In (b), both Lx and Ly are scaled to keep
the same ratio between the swimmer length and system size.
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