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1 Control of rotary actuated Stweart Platform

The rotary actuated Stewart platform [1, 2] consists of 6 servo motors (Dynamixel AX-12A,

Robotis) controlled by an Arduino compatibile microcontroller (Arbotix-M Robocontroller,

Trossen Robotics). The servos labelled i = 1 − 6 and are arranged in 3 pairs separated by

120◦C. To coordinate the motion of the 6 servo motors so as to produce a precessing gravity

vector, each of the n pairs is given a phase offset of 2nπ/3. The motion of the platform can

then be controlled with a specified amplitude A and period T to give an angle update β

β = A cos (
2πt

T
+

2nπ

3
) (1)

This update is converted into microseconds and sent to the ith motor which is incremented

depending on its location:

β
(i)
t+1 =


βi
t + β i, even

βi
t − β i, odd

(2)

The orientation of the platform is measured in two ways. First a bulls-eye spirit level is

used as a check to ensure that the platform is level for static experiments. Second, a BNO-

055 digital accelerometer (Bosch Sensortec GmbH, Germany) is used to measure the time

evolution of the field during experiments. The sensor is configured to report quaternion

values (w, x, y, z) which can be used to construct a three dimension rotation matrix for

every time step:

Q =


w2 + x2 + y2 + z2 2(xy − wz) 2(wy + xz)

2(xy + wz) w2 − x2 + y2 − z2 2(−wx+ yz)

2(−wy + xz) 2(wx+ yz) w2 − x2 − y2 + z2

 (3)

The matrix Q can be used to obtain an orientation vector v by through multiplication of

the unit vector normal n = [0, 0, 1]T to the platform surface in a flat configuration. The tilt
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angle α between this normal vector and the orientation vector is calculated according to:

α = arccos

(
v · n

∥v∥∥n∥

)
(4)

Two dimensional projections of the field are obtained by taking the x, y components of v

and converted to an angle θ = arctan(y/x). The input function u is defined as the cosine of

θ relative to the unit vector n = [0, 1]T and can take values between -1 and 1.

2 Experimental determination of transition angle for

isolated vertex

The angle at which an isolated triplet structure would break was determined experimentally.

Here, large (4” x 3”) glass slides (Ted Pella, USA) were used. The slides were cleaned and

treated with air plasma immediately before use. The hydrophobic boundary was made using

ink from a multisurface permanent marker (Sharpie™). The pattern was created by program-

ming an automated plotter/cutter (Roland32 Camm1-Servo) with CAD tools. Previous work

has shown there to be negligible difference between boundaries formed from permanent ink

versus thiol-treated gold [3]. Stable triplet structures were formed by pipetting 2 µL of

30% PG solution onto the surface. After the configurations were seeded, glass substrate was

placed into the chamber moutned atop the rotary actuated Stewart platform. The platform

was programmed to tilt itself to a specified angle and hold. If the configuration broke within

30s, it was regarded as unstable (Supplementary Figure 2). Typically, triplets would separate

into a singlet and doublet. This experiment was repeated for 12 different values of sin(α)

between 0.00 and 0.13.
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3 Basic features of two-component droplets

The basic features associated with the evaporation of two-component Marangoni-contracted

droplets have been described previously [4]. It is well known that evaporation at the edge

of a droplet is greater than at its center. Thus, when a droplet is composed of two miscible

fluids, where one fluid has a higher surface tension and lower vapor pressure (e.g. water

and propylene glycol), an effective contact angle θeff is observed where otherwise complete

wetting is expected. This effective contact angle is due to a Marangoni flow from the droplet

apex to its border that seeks to eliminate the vapor-induced surface tension gradient across

the droplet. This bulk flow stops the otherwise individual components of the droplet from

completely wetting the surface. Across a wide range of concentrations, cos(θeff ) has been

shown to be a linear function of humidity: cos(θeff ) = mRH + b [4, 5]. Here, RH is non-

dimensional and assumes a value between 0− 100 and the linear fitting parameters m and b

are determined empirically. This humidity dependent contact angle gives rise to the two key

features of two-component droplets that are exploited in this work: 1) an absence of pinning

and 2) the ability to move under external humidity gradients.

4 Behavior of droplet on an inclined plane in one di-

mension

The behavior of individual two-component droplets subject to an external gravitational force

has been studied by the authors previously in a series of inclined plane experiments [5]. Here,

we describe the main results of that work. We consider droplets with an average radius R,

viscosity η, surface tension γ, and density ρ. Since this problem involves a distribution of

droplets with different sizes we let R → aRi to mark the size of the ith droplet. Since Ri is

non-dimensional in our notation we must multiply by the characteristic length scale a. In

one dimension, the scalar velocity Ui of the i
th droplet can be estimated by equating the drag
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force Fdrag with the external gravitational force Fg. A rough description of Fdrag is given by:

Fdrag =
πaRiηln(k1/k2)

θ
Ui (5)

In this expression, Ui describes the velocity of the contact line normal to the plane of motion

[5]. For convenience, we define A = θ/ln(k1/k2). This term is a numerical factor describing

the singular dissipation in the moving droplet [6]. The terms k2 and k1 describe the length

scales associated with the details of the physical process of viscous dissipation as the droplet

moves. Typically, k2 represents the macroscopic length scale on the order of droplet radius

while k1 is more difficult to specify, depending on the dissipation mechanism. For sessile

droplets, k1 is on the order of the size of a molecule of water while two-componet droplet

have k1 on the order of nanometers [5]. This behavior is similar to droplet motion on liquid

infused surfaces [7]. Meanwhile, the force of gravity on a spherical droplet can be described

straightforwardly:

Fg =
4πa3R3

i ρg

3
sin(α) (6)

where g is the standard acceleration of gravity and α is the angle of incline. Equating Fdrag

and Fg and solving for Ui gives:

Ui =
4a2R2

i ρgA

3η
sin(α) (7)

In general, a viscous force Fdrag acting on a particle is proportional to the particle’s velocity

Ui according to Fdrag = Cdrag,iUi, where Cdrag,i describes viscous damping. As such, we can

identify in Equation 7 that Cdrag,i = aRiη. Finally, this expression can be rewritten in terms

of a non-dimensional velocity by normalizing with U0 = γ/η:

Ui

U0

=
4a2R2

i ρgA

3γ
sin(α) (8)
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The authors demonstrated that this relationship describes the motion of droplets of varying

in size and viscosity. Importantly, and in contrast to sessile droplets, this expression holds

true even for small α. Typical sessile droplets experience an additive pinning force which

restricts their motion below a certain critical angle, two-component droplets experience a

negligible pinning force. In other words, the capillary number (Ca = η
γ
Ui) is proportional

to the Bond number (Bo = R2ρg
γ

) according to Ca ∼ Bosin(α). The practical consequence

of this result is that an inclined plane can be used to make droplets motile. It was noted

that above a certain value of Bosin(α), the receding contact line deforms and eventually

enter a regime where they emit smaller droplets. Similar behavior has been reported for

single-component droplets on inclined planes [8]. We also remark that the effect of gravity

on evaporation remains poorly understood [9, 10]. These effects are consequential for the

internal Marangoni flow [11, 12] which underlies motility in two-component droplets.

5 Force of attraction between neighboring droplets in

one dimension

The behavior of pairs of droplets has also been studied previously [4, 13]. A two-component

droplet i can move in response to a humidity gradient established by a neighboring droplet j

separated by a distance rij. The magnitude of this force is given by Fa = γaRimRHf(Rj, rij).

Here, m is the slope describing the linear relation between θeff and RH. The function

f(Rj, rij) has previously been identified as the gradient in the vapor concentration estab-

lished by the jth droplet. Thus, f(Rj, ri) = ∇ϕ(Rj, rij) and scales with 1/r2ij [3]. Here,

the gradient is calculated with respect to the Cartesian coordinates x and y. The vapor

concentration of a lens-shaped droplet with contact angle θ ∼ 0◦ can be described by [14]:

ϕ(Rj, rij) =


1 rij < Rj

2
π
arcsin (

Rj

rij
) rij ≥ Rj

(9)

6



The low-contact angle limit is valid based on of experimental values obtained for isolated

droplets θ ∼ 10◦ [4]. Further, the contact angle is expected to be further reduced in the

high-humidity environment of the droplet array [15]. If we consider a pair of droplets such

that the jth droplet is pinned and the ith droplet is free to move, we can obtain the velocity

of the mobile droplet from Cdrag,iUi = Fa. Since Cdrag,i = aηRi:

Ui =
2γmRH

πη
∇ arcsin (

Rj

rij
) (10)

As before, this expression can be rewritten in terms of a non-dimensional velocity by nor-

malizing with U0 = γ/η:

Ui

U0

=
2mRH

π
∇ arcsin (

Rj

rij
) (11)

To extend this expression to account for multi-droplet interactions we introduce a fitting

parameter. This approach has been validated in previous work by the present authors [3].

The fitting parameter accounts for non-additive shielding effects without adding significant

computational complexity (e.g. explicitly accounting for multi-body interactions). The

fitting parameter is denoted by ξ and represents the number of discrete lattice sites before

interactions are clipped:

Ui

U0

=
2mRH

π
∇

N (ξ)∑
j

arcsin (
Rj

rij
) (12)

Thus N (ξ) represent the total number of droplets that are ξ discrete lattice sites away. It

was shown that after identifying a suitable value for ξ, this description could capture the

basic features of relaxation from a high energy to a low energy configuration [3]. The value

of ξ was found to be proportional to the density of droplets per area such that dense arrays

more efficiently screen their neighbors [3].
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6 Multi droplets subject to a time-varying field in two

dimensions

We have introduced the basic physics describing motion of two-component droplets due to the

force of gravity on an inclined plane and the force associated with vapor-mediated attraction

between many droplets. We now extend this description to a system of N two-component

droplets confined to a hexagonal honeycomb lattice defined in the x, y plane subject to a

time-varying external body force.

We begin by defining a vector description for the lattice. The distance rij between the

ith and jth droplets is given by:

rij = ∥P⃗j + r⃗j − P⃗i − r⃗i∥ (13)

Where the vectors P⃗ describe the position of the unit cell relative to the origin and the vectors

r⃗i describe the position of a droplet relative to its unit cell. This is shown schematically in

Supplementary Figure 1. In this notation the non-dimensional velocities must be turned into

vector quantities: Ui

U0
→ ˙⃗ri. Equations 8 and 12 are combined to become:

˙⃗ri =
2mRH

π
∇⃗

N (ξ)∑
j

arcsin (
Rj

rij
) +

4a2R2
i ρgA

3γ
sin(α)u⃗(t) (14)

where have introduced u⃗(t) = {sin(ωt)x̂, cos(ωt)x̂} to describe the time dependence of the

orientation of the external body force.

Finally, we must construct a term to represent the hexagonal potential well to constrain

the droplet’s motion within the unit cell. The effect of the hydrophobic boundary on the

droplet velocity is obtained from ∇Ecell. Conceptually, Ecell represents the potential well

defined by the short ranged repulsive force imposed by the hydrophobic material used to

fabricate the lattice pattern. Mathematically, this is represented by a non-dimensional lo-

gistic function whose parameters are chosen such that the barrier height is approximately
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an order of magnitude greater than the largest possible value of Equation 14:

Ecell =
−R

1 + e
0.48−R−z(x,y)

0.023

(15)

Here, we have constructed z(x, y) from a function having hexagonal symmetry in the xy-

plane. This reflects the unit cells hexagonal symmetry and determines the influence of the

boundary given a droplets Cartesian coordinates (x, y):

z =

√
x2 + y2

ζ(κ)
(16)

where ζ(κ) is a Fourier series in multiples of 6 and κ = arctan y
x
. Explicitly:

ζ(κ) =
5389

5184
− 2

45
cos(6κ) +

1

180
cos(12κ)− 2

2835
cos(18κ) +

1

20160
cos(24κ) (17)

The values of the coefficients ζ(κ) are chosen such that derivatives with respect to κ are

set equal to zero. This expression yields a boundary profile with hexagonal symmetry. The

potential produced by this function is shown in Supplementary Fig. 1.

We now add this final term to Equation 14 to obtain the equation of motion for the

multi-droplet system subject to a time-varying external body force:

˙⃗r =
2mRH

π
∇⃗

N (ξ)∑
j

arcsin (
Rj

rij
) +

4a2R2
i ρgA

3γ
sin(α)u⃗(t) + ∇⃗E(r⃗) (18)

The sharp boundary that the term ∇⃗E(r⃗) creates makes this a system of stiff differential

equations and so they are integrated using a suitable method such as the backwards difference

formula as implemented by the NDSolve function in Mathematica.
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Supplementary Figure 1: ( A) schematic showing the geometry of the hexagonal honey-

comb lattice. The vectors P⃗ represent the distance from the origin to the center of a given
unit cell and the vectors r⃗ represent the distance from the center of the unit cell a droplet’s
instantaneous position. The origin is located at the center of the unit cell in the bottom
left. (B) Three dimensional plot of the cell boundary defined by Ecell. (C) A cross section is
obtained by plotting Ecell against z as described in Equation 15, highlighting the steepness
of the boundary.
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Supplementary Figure 2: Size distribution of droplets. (A) distribution of droplets used
to obtain experimental phase diagram in Fig. 2. Measurement of non-dimensional droplet
radius at tinitial = 0 s when rotation starts and tfinal when rotation stops, show an average
1.9% reduction in size. (B) distribution for the two systems represented in Fig. 4. The
high disorder distribution is centered at R = 0.21a with n = 10.1% and the low disorder
distribution is centered at R = 0.18a with n = 8.9%. The vertical line indicates a threshold
below which droplets show limited mobility when the system is driven with field amplitude
sin(α) = 0.095.
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Supplementary Figure 3: Experimental data for a set of inclined plane experiments
subjecting an individual triplet configuration to an increasing body force. Each data point
represents an independent experiment. A configuration is considered unbroken if it remains
stable after 30s. Insets are cartoon illustrations corresponding to a broken and unbroken
triplet. The arrow indicates the direction of gravity.
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Supplementary Figure 4: Trajectories of individual droplets shown for a selection of
values for sin(α) obtained from experimental realizations at ωt0 = 1.61(< R >= 0.18a,
noise=10.1%). Fig. 3A is obtained from this data.
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Supplementary Figure 5: Hysteresis loops measured as a function of sin(α) for systems
with droplet radius (A) < R >= 0.21a, noise= 10.1% (ωt0 = 1.34) and (B) < R >= 0.18a,
noise= 8.9% (ωt0 = 2.04). For each loop the horizontal axis is the orientation of the applied
field and the vertical axis is magnetization. The loops are colored according to their average
magnetization according to the color scheme described in Fig. 2
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Supplementary Figure 6: Microscopic dynamics in transition region depends on droplet
size and local environment. (A) Droplet trajectories for an experiment conducted at sin(α) =
0.095 and ωt0 = 2.04 (Fig. 4E) with three droplets highlighted. (B) Time evolution of
ψ (left) and radius R (right) for the highlighted droplets in (A) corresponding to fixed
(red), migrating (orange), and field-driven (blue) droplets. (C) Cartoon illustration showing
possible scenarios where diffusion and details of neighboring droplets work together to create
migratory droplet behavior. Droplets marked with red are large enough such that they are
fully mobilized by the applied field - as a result their motion is governed by the applied
field. The motion of smaller droplets (unmarked) is influenced by their proximity to larger
droplets. As vapor accumulates in the center of the system, the likelihood of a droplet
migrating towards the center of the system increases leading to other rearragenments within
the system. Migrating droplets are an example of non-trivial dynamics.
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Supplementary Figure 7: Trajectories of individual droplets shown for a selection of
values for sin(α) obtained from numerical simulation at ωt0 = 0.78 (R = 0.25a, noise=0%).
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Supplementary Figure 8: Trajectories of individual droplets shown for a selection of
values for sin(α) obtained from numerical simulation ωt0 = 0.78 (R = 0.225a, noise=10%).
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Supplementary Figure 9: Effect of different sources of noise on numerical phase diagram.
Numerical phase diagram (A) and variance (B) for uniform droplets (R = 0.25a) with 5%
noise in initial position. Simulations were fixed with ξ = 2 and each diagram represents
N = 6 different random initial conditions.
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Supplementary Figure 10: Hysteresis loops obtained from simulation data at (ωt0 =
0.78) with (A) uniform droplet size (R = 0.25a, noise= 0) and (B) disordered droplet size
(R = 0.225a, noise= 10%). For each loop the horizontal axis is the orientation of the applied
field and the vertical axis is magnetization. The loops are colored according to their average
magnetization according to the color scheme described in Fig. 2.
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Supplementary Video 1: Experimental set showing preparation of a droplet tiling, place-

ment in an enclosed chamber, and implementation of rotating gravitational field using a

Stewart platform.

Supplementary Video 2: Transition from interaction- to field-dominated behavior con-

trolled by strength of rotating gravitational field. Representative data for three distinct

phases are shown. The orientation of droplets are annotated according the scheme in Fig. 2.

Supplementary Video 3: Strongly, driven large droplets leave behind a trail of their own

constituents.

Supplementary Video 4: Mesoscale structures emerge at the onset of transition region.

The qualitative features of the structures depend on the spatial distribution of field-couplings.

The orientation of droplets are annotated according to the scheme in Fig. 2. Bond Lengths

between neighboring droplets are annotated according to the scheme in Fig. 4.

Supplementary Video 5: Annealing of the frustrated centered hexagonal honeycomb

lattice (N = 61). The orientation of droplets are annotated according to the scheme in Fig.

2. Bond Lengths between neighboring droplets are annotated according to the scheme in

Fig. 4.

Supplementary Video 6: Numerical simulation showing the transition from interaction-

dominated to field-dominated behavior at ω/ω0 = 160 for a system with R = 0.225a and

noise=10%. The interaction lengthscale is set to ξ = 2
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[7] Keiser, A., Keiser, L., Clanet, C. & Quéré, D. Drop friction on liquid-infused materials.

Soft Matter 13, 6981–6987 (2017).

[8] Le Grand, N., Daerr, A. & Limat, L. Shape and motion of drops sliding down an

inclined plane. Journal of Fluid Mechanics 541, 293–315 (2005).

[9] Kim, J. Y., Hwang, I. G. & Weon, B. M. Evaporation of inclined water droplets.

Scientific Reports 7, 42848 (2017).

[10] Timm, M. L., Dehdashti, E., Jarrahi Darban, A. & Masoud, H. Evaporation of a sessile

droplet on a slope. Scientific Reports 9, 19803 (2019).

[11] Du, X. & Deegan, R. D. Ring formation on an inclined surface. Journal of Fluid

Mechanics 775, R3 (2015).
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