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1 Parameter choices for structure functions

Parameter values for the structure functions GX
Y (i, µ) and ΨX

Y Z(i, ξ, λ, ζ),
based on the approach used in [1]. Through these parameter variations we
obtained 75 features for G and 60 features for Ψ. We manually adjusted
these to optimize quantitative output from our SVM and note that, as the
paper by Behler and Parinello [2] prescribes, the choice of parameters is not
unique but best suits the description of the local environment in this system.

Table 1: Feature values structure functions

Feature Values
µ (µm) 4.6, 4.7, 4.8, ... , 11.8, 11.9, 12
ξ(µm) 0.368, 0.243, 0.177, ... , e−

√
β, ... , 0.000492, 0.000432

where β=1, 2, 3, ... , 58, 59, 60
ζ 0.1, 0.2, 0.3, ... , 2.9, 3.0, 0.1, 0.2, ... , 2.8, 2.9, 3.0
λ 1, 1, 1, ... , 1, 1, -1, -1, ... , -1, -1, -1

2 SVM optimization

2.1 Choice of kernel and feature importance

In the SVM algorithm, we used a linear kernel for the hyperplane to allow
interpretation on the importance of the features.

The hyperplane of the SVM follows the equation wTxi − b = 0. Here, xi is
a set of all features xi, wT is a set of weights for each feature xi, and b is
some offset, also referred to as the “bias”. Since wT provides the weight of a
feature xi to the positioning of the hyperplane, this can be used as a measure
of the feature importance of xi.

We obtain Weakness by calculating the distance of datapoints from the hy-
perplane, which is analogous to the probability of the datapoint belonging
to its classification class.
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2.2 Dataset size and label distribution

To prevent under- or over-fitting, we calculated the training and testing ac-
curacy for different sized training datasets. The training accuracy was cal-
culated through 5 fold cross validation, and we used a test set of 33,388
particles that were not used during training. The testing and training ac-
curacy are more or less equal in the region around 12,000 datapoints, after
which the testing accuracy decreases, which is a sign of overfitting [3]. Thus,
the optimal dataset size was 12,000 particles.

We also determined the optimal ratio of particles with label 1 (crack) and
with label 0 (no crack). The ratio of the datapoints in the training set was
varied from 10:90 to 90:10 [label 1:label 0], in steps of 5%. Considering that
equal accuracy for testing and training is optimal [3], we found an optimal
ratio 45:55 [label 1:label 0].
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3 ML outputs for varying surface coverage

Figure S1: Machine Learning output of an SVM model using physics mo-
tivated structural indicators (left), with their corresponding surface map
(right) for 3 different samples: (a) 3953 particles (ϕ ≈ 0.84, prediction accu-
racy = 79.2%) (b) 4624 particles (ϕ ≈ 0.72, prediction accuracy = 74.0%)
(c) 3562 particles (ϕ ≈ 0.65, prediction accuracy = 62.6%) The approximate
location of the fracture is shown as a black line and the scalebar represent
50 µm.
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4 Averages and distributions of Weakness val-
ues

Figure S2: Distribution of predicted Weakness values for the experiment
shown in Fig. 3 of the main text. Dashed lines give average Weakness for
both distributions.
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