Supplementary Information

Coflowing aqueous and oil-based ferrofluid streams exposed to a magnetic field

S. K. Jain, A. K. Sen*

Micro Nano Bio Fluidics Unit, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai – 600036, Tamil Nadu, India

*Corresponding Author: <u>ashis@iitm.ac.in</u>

S1. Properties of the liquids used in the experiments

The properties of the aqueous glycerol (glycerol+DI water):

Fluid	DI water: Glycerol %(v/v)	Density (kg m ⁻³)	Viscosity (mPa s)
	1:1	1139	6.43
Aqueous glycerol	2:1	1099	2.96
	9:1	1025	1.52

The properties of oil-based ferrofluid:

Fluid	Concentration %(v/v)	Density (kg m ⁻³)	Viscosity (mPa s)
Ferrofluid	2%	892	28.8
	5%	1098	36.1

The interfacial tension between the different fluid combinations:

DI water: Glycerol	Oil-based Ferrofluid	IFT (mN m ⁻¹)
1:1	2%	27.3
2:1	2%	24.1
9:1	2%	19.7
1:1	5%	13.4
2:1	5%	15.5
9:1	5%	23.8

S2. Calculation of the timescales

The transition between the different flow regimes can also be explained in terms of the relevant timescales: magnetic pinching timescale, which we define as $t_{mp} \sim (\gamma W / \nu \mu_0 H^2)$ and advection timescale, $t_{ad} \sim (W/U_2)$. The advection timescale t_{ad} is calculated from the channel width W and the average flow velocity of the aqueous phase, U_2 . The magnetophoretic timescale is estimated using the values of the interfacial tension (γ), channel width W, kinematic viscosity of the aqueous phase (ν), magnetic permeability of free space (μ_0), and magnetic field intensity (H).

Case I:

For smaller $Bo_m = 20$ and $Ca_r = 2.6$, we find that the magnetic pinching timescale is much longer than the advection timescale, $t_{mp} > t_{ad}$. The liquid properties and operating conditions for calculating the t_{mp} and t_{ad} in this regime are given as follows: interfacial tension, $\gamma = 24.1 \text{ mN/m}$, channel width, W = 300 µm, the average flow velocity of the aqueous phase, $U_2 = 0.02 \text{ m/s}$, kinematic viscosity of the aqueous phase, $v = 3 \times 10^{-6} \text{ m}^2/\text{s}$, magnetic permeability of free space, $\mu_0 = 4\pi \times 10^{-7} \text{ N/A}^2$, and magnetic field intensity, H = 2950 A/m.

We calculate the $t_{mp}{\sim}0.223~s$ and $t_{ad}{\sim}0.015~s.$

Case II:

For smaller $Bo_m = 30$ but a higher $Ca_r = 7$, we get a magnetic pinching timescale which is of the same order as that of the advection timescale, $t_{mp} \sim t_{ad}$. The liquid properties and operating conditions for calculating the t_{mp} and t_{ad} in this regime are given as follows: interfacial tension, $\gamma = 24.1$ mN/m, channel width, $W = 300 \mu$ m, the average flow velocity of the aqueous phase, $U_2 = 0.01$ m/s, kinematic viscosity of the aqueous phase, $\nu = 3 \times 10^{-6}$ m²/s, magnetic permeability of free space, $\mu_0 = 4\pi \times 10^{-7}$ N/A², and magnetic field intensity, H = 7521 A/m.

We calculate the $t_{mp}{\sim}0.034~s$ and $t_{ad}{\sim}0.030~s.$

Case III:

At a higher Bo_m and Ca_r , we find that the magnetic pinching timescale is smaller than the advection timescale, $t_{mp} < t_{ad}$. The liquid properties and operating conditions for calculating the t_{mp} and t_{ad} in this regime are given as follows: interfacial tension, $\gamma = 24.1 \text{ mN/m}$, channel width, $W = 300 \text{ }\mu\text{m}$, the average flow velocity of the aqueous phase, $U_2 = 0.005 \text{ m/s}$, kinematic viscosity of the aqueous phase, $v = 3 \times 10^{-6} \text{ m}^2/\text{s}$, magnetic permeability of free space, $\mu_0 = 4\pi \times 10^{-7} \text{ N/A}^2$, and magnetic field intensity, H = 15545 A/m.

We calculate the $t_{mp}{\sim}0.008~s$ and $t_{ad}{\sim}0.060~s.$