Supplementary Information

Coflowing aqueous and oil-based ferrofluid streams exposed to a magnetic field

S. K. Jain, A. K. Sen*

Micro Nano Bio Fluidics Unit, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai – 600036, Tamil Nadu, India

*Corresponding Author[: ashis@iitm.ac.in](mailto:ashis@iitm.ac.in)

S1. Properties of the liquids used in the experiments

The properties of the aqueous glycerol (glycerol+DI water):

The properties of oil-based ferrofluid:

The interfacial tension between the different fluid combinations:

S2. Calculation of the timescales

The transition between the different flow regimes can also be explained in terms of the relevant timescales: magnetic pinching timescale, which we define as $t_{mp}{\sim}(\gamma W/\nu\mu_0H^2)$ and advection timescale, $t_{ad}{\sim} (W/U_2).$ The advection timescale t_{ad} is calculated from the channel width W and the average flow velocity of the aqueous phase, U_2 . The magnetophoretic timescale is estimated using the values of the interfacial tension (γ), channel width W, kinematic viscosity of the aqueous phase (ν), magnetic permeability of free space (μ_0), and magnetic field intensity (H).

Case I:

For smaller Bo_m = 20 and Ca_r = 2.6, we find that the magnetic pinching timescale is much longer than the advection timescale, $t_{mp} > t_{ad}$. The liquid properties and operating conditions for calculating the t_{mp} and t_{ad} in this regime are given as follows: interfacial tension, $\gamma = 24.1$ mN/m, channel width, W = 300 μm, the average flow velocity of the aqueous phase, $U_2 = 0.02$ m/s, kinematic viscosity of the aqueous phase, $v = 3 \times 10^{-6}$ m²/s, magnetic permeability of free space, $\mu_0 = 4\pi \times 10^{-7}$ N/A², and magnetic field intensity, H = 2950 A/m.

We calculate the t_{mp} ~0.223 s and t_{ad} ~0.015 s.

Case II:

For smaller $Bo_m = 30$ but a higher $Ca_r = 7$, we get a magnetic pinching timescale which is of the same order as that of the advection timescale, $t_{mp} \sim t_{ad}$. The liquid properties and operating conditions for calculating the t_{mp} and t_{ad} in this regime are given as follows: interfacial tension, $\gamma = 24.1$ mN/m, channel width, W = 300 μm, the average flow velocity of the aqueous phase, $U_2 = 0.01$ m/s, kinematic viscosity of the aqueous phase, $v = 3 \times 10^{-6}$ m²/s, magnetic permeability of free space, $\mu_0 = 4\pi \times 10^{-7}$ N/A², and magnetic field intensity, H = 7521 A/m.

We calculate the $t_{\rm{mn}}$ ~0.034 s and $t_{\rm{ad}}$ ~0.030 s.

Case III:

At a higher Bo_m and Ca_r , we find that the magnetic pinching timescale is smaller than the advection timescale, t_{mp} $<$ t_{ad} . The liquid properties and operating conditions for calculating the t_{mp} and t_{ad} in this regime are given as follows: interfacial tension, $\gamma = 24.1$ mN/m, channel width, W = 300 μm, the average flow velocity of the aqueous phase, U₂ 0.005 m/s, kinematic viscosity of the aqueous phase, $v = 3 \times 10^{-6}$ m²/s, magnetic permeability of free space, $\mu_0 =$ $4\pi \times 10^{-7}$ N/A², and magnetic field intensity, H = 15545 A/m.

We calculate the $t_{\rm{mp}}{\sim}0.008$ s and $t_{\rm{ad}}{\sim}0.060$ s.