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1 Probabilities of zwitterion states derivation

Recalling the Helmholtz free energy expression F = E − TS, we will need the internal energy E and
entropy S of the system. S is given by the Gibbs entropy formula, S = −kB

∑
i Ri lnRi. The internal

energy of each state is characterized by electrostatic interactions, and it follows that E is given by
weighted sum of each state’s internal energy Ei and probability Ri, such that

F

kBT
=

∑
i

[
RiEi

kBT
− Ri lnRi

]
. (1.1)

In states B-D, there are no electrostatic interactions as they have at most one charge present. However,
for state A, since two charges, one negative and one positive, are present, we can use Coulomb’s law
to determine the electrostatic interaction energy of two oppositely charged point charges separated by
distance p1, the dipole length of the zwitterion, as

EA = − e2

4πεoε

1

p1
, (1.2)

Recalling that EB , EC , and ED are zero, and plugging in the corresponding values of EA and S
determined above, we see that

F

kBT
= −RA

e2

4πεoε

1

kBT

1

p1
+ RA lnRA + RB lnRB + RC lnRC + RD lnRD. (1.3)

Realizing that the first term in the above equation contains the definition for Bjerrum length, ℓB , the
equations simplifies to

F

kBT
= −RA

ℓB
p1

+ RA lnRA + RB lnRB + RC lnRC + RD lnRD. (1.4)

To solve Eq. 1.4 in terms of RA, three additional constraints that relate the probabilities of each
state to one another, and additionally, relate them to the parameters and conditions of our system,
namely the pH. Thankfully, these additional constraints are not particularly challenging to derive. To
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begin, we know that the sum of the probabilities must equal unity, since the zwitterion can only occupy
one of these four states. Next, we know that all the positive charge associated with the zwitterion
must be found in states A and C, and that the total fraction of positive charges on the zwitterion
is defined by α+. Finally, using a similar argument, all the negative charges on the zwitterion must
occupy either state A or B, and thus the probabilities RA and RB must add to |α−|. These constraints
are summarized in Eq. 10 of the main text.

By rearranging and plugging in the above constraints to Eq. 1.4, we get

F

kBT
=− RA

ℓB
p1

+ RA lnRA + (|α−| − RA) ln(|α−| − RA)

+ (α+ − RA) ln(α+ − RA) + (1 + RA − α+ − |α−|) ln(1 + RA − α+ − |α−|).
(1.5)

By minimizing the above expression with respects to RA, a closed-form expression for RA can be
obtained,

1

kBT

∂F

∂RA
= 0 = −ℓB

p1
+ ln(RA)− ln(|α−| − RA)− ln(α+ − RA) + ln(1 + RA − α+ − |α−|). (1.6)

Rearranging, we see that
(RA)(1 + RA − α+ − |α−|)
(α+ − RA)(|α−| − RA)

= eℓB/p1 . (1.7)

The expression above can be solved analytically to yield the closed-form expression for RA in terms of
physically relevant parameters,

RA =
1

2(eℓB/p1)

[
1 + (α+ + |α−|)(eℓB/p1 − 1)

−
√
(1 + (α+ + |α−|)(eℓB/p1 − 1))2 − 4α+|α−|eℓB/p1(eℓB/p1 − 1)

]
.

(1.8)

From here, the values for RB , RC , and RD can be solved using Eq. 10 of the main text.
If the free energy of each state was identical, and thus equally energetically favorable, the probability

distributions (w.r.t. pH) would be straightforwardly defined by α+ and α− like such

RA,unweighted = α+|α−|,
RB,unweighted = (1− α+)|α−|,
RC,unweighted = α+(1− |α−|),
RD,unweighted = (1− α+)(1− |α−|).

(1.9)

It is useful to mention that our Boltzmann-weighted definitions for the zwitterion state probabilities
decompose to Eq. 1.9 when all states are equally energetically favorable. Using a simple scenario in
which Ei = 0 for all i, we see that the right-hand side of Eq. 1.7 becomes 1. Rearranging, it is apparent
that we recover the limiting case in which Ri is independent of the energetics of each state.

2 Derivation of the degrees of ionization

The definition for α− can be determined by considering a general chemical equation for an acid, AH,
and its conjugate base, A−, in equilibrium and the Henderson-Hasselbalch equation,

AH
Ka

A– + H+. (2.1)

The acid dissociation constant, Ka, can be estimated using

Ka =

[
A−][H+

][
AH

] . (2.2)

The fraction of available negatively charged groups to total number of negative moieties is the general
definition for α−,

α− =

[
A−][

A−
]
+

[
AH

] . (2.3)
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Rearranging Eq. 2.2, substituting into Eq. 2.3, and taking H+ as 10-pH, we arrive at

α− =
1

1 + 10pKa−pH
. (2.4)

Considering α− determines the negative charge density of the polyzwitterion, we prepend a negative
sign to the above definition to reach our final equation (Eq. 11 of the main text).

The definition for α+ can be reached by considering a general chemical equation for the condensation
of a small negative salt ion onto the positively charged group of the zwitterion,

R N+ + X–
Ksalt

R NX (2.5)

where N+ is the positive moiety, R is the zwitterion in which N+ inhabits, and X− is a negative salt
ion. Ksalt is defined as

Ksalt =

[
NX

][
N+

][
X−

] . (2.6)

It follows that α+, the fraction of available positively charged groups to the total number of positive
moieties, can be generally described as

α+ =

[
N+

][
N+

]
+

[
NX

] . (2.7)

Rearranging Eq. 2.6, plugging it into Eq. 2.7, and taking X− as 10-pH, since the only ions added to
our system are in the form of a strong acid such as HCl, we arrive at our definition for α+,

α+ =
1

1 +Ksalt × 10−pH
. (2.8)

3 Phase behavior constraint equations

The incompressibility condition for phase A is

ϕ1,A + ϕ2,A + ϕ+,A + ϕ−,A + ϕ0,A = 1. (3.1)

where ϕi,j refers to the volume fraction of species i of phase j. Analogously, for phase B, the incom-
pressibility constraint is

ϕ1,B + ϕ2,B + ϕ+,B + ϕ−,B + ϕ0,B = 1. (3.2)

The electroneutrality condition for phase A is

ϕ+,A = ϕ−,A. (3.3)

Finally, the four lever rules to solve the remaining variables are

ϕ1,A + (1− x)ϕ1,B = ϕ1,

ϕ2,A + (1− x)ϕ2,B = ϕ2,

ϕ+,A + (1− x)ϕ+,B = ϕ+,

ϕ−,A + (1− x)ϕ−,B = ϕ−.

(3.4)
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