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1 Extended DDM results

The image structure function d(q,∆t) obtained from DDM analysis is first fitted with a function
of the kind d(q,∆t) = A(q)[1 − f(q,∆t)] + B(q), where f(q,∆t) is a compressed exponential
function f(q,∆t) = exp[−(Γ(q)∆t)α(q)] and the compressing exponent α(q) is left as a free
parameter to check its dependence on q. The compressing exponent α(q) is shown in Fig. S1
for each ϕ at each foam age t∗, where we can see that it displays only a weak q-dependence.
We thus evaluate the average compressing exponent α = ⟨α(q)⟩ by averaging over a range of q
for which at least the first 10% of the decay of f(q,∆t) is visible and the amplitude is larger
than the noise.

We then fit the same data again with a compressed exponential where the compressing
exponent is fixed to be equal to its mean value. Results obtained from this fit are reported in Fig.
S2, S3, and S4 for each sample at foam age t∗ = 1800, 2700, and 3600 seconds respectively. Each
figure contains representative examples of intermediate scattering functions f(q,∆t) computed
at different wavevectors q, the amplitude A(q) and the noise term B(q), as well as the relaxation
rate Γ(q). The vertical dashed line in the graphs of Γ(q) represents the wavevector corresponding
to the a length scale of the order of the typical bubble size R∗, namely q∗ = 2π/R∗. Each column
refers to a different oil fraction ϕ (65%, 70%, 75%, and 80% from left to right). The selected
range of wavevectors q is highlighted with coloured symbols.

Figure S1: Compressing exponent α(q) obtained from a first fit of the image structure functions.
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Figure S2: Fit results for the time window centered at t∗ = 1800 s. Each column correspond to
a different oil fraction ϕ (65%, 70%, 75%, and 80% from left to right). First row: representative
examples of intermediate scattering function f(q,∆t) for different wavevectors q. Empty squares
represent experimental data. The solid lines represent a compressed exponential fit to the data
with fixed compressing exponent α. Second row: amplitude A(q) and noise term B(q) obtained
from the fit over the whole range of accessible q. Coloured symbols highlight the selected
range of q. Third row: relaxation rate Γ(q). The vertical dashed line marks the wavevector
q∗ = 2π/R∗.
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Figure S3: Fit results for the time window centered at t∗ = 2700 s. Each column correspond to
a different oil fraction ϕ (65%, 70%, 75%, and 80% from left to right). First row: representative
examples of intermediate scattering function f(q,∆t) for different wavevectors q. Empty squares
represent experimental data. The solid lines represent a compressed exponential fit to the data
with fixed compressing exponent α. Second row: amplitude A(q) and noise term B(q) obtained
from the fit over the whole range of accessible q. Coloured symbols highlight the selected
range of q. Third row: relaxation rate Γ(q). The vertical dashed line marks the wavevector
q∗ = 2π/R∗.
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Figure S4: Fit results for the time window centered at t∗ = 3600 s. Each column correspond to
a different oil fraction ϕ (65%, 70%, 75%, and 80% from left to right). First row: representative
examples of intermediate scattering function f(q,∆t) for different wavevectors q. Empty squares
represent experimental data. The solid lines represent a compressed exponential fit to the data
with fixed compressing exponent α. Second row: amplitude A(q) and noise term B(q) obtained
from the fit over the whole range of accessible q. Coloured symbols highlight the selected
range of q. Third row: relaxation rate Γ(q). The vertical dashed line marks the wavevector
q∗ = 2π/R∗.
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2 Displacement correlations

We investigate how single-bubble motility depends on the bubble size. To account for the
different average motility of different samples, we consider for each sample a different time
delay ∆t, corresponding to the same global mean square displacement (MSD), as shown in Fig.
S5 (a). Thus, we calculate the MSD for each single bubble and plot it against the bubble radius
R. Results are shown in Fig. S5(b) for all oil fractions ϕ. Only a mild dependency on the
bubble size is observed, not compatible with the scaling MSD ∝ R−1 recently reported for a
dense ripening emulsion [1].

For the same time delays, we also compute the spatial correlation function of bubble dis-
placements as ⟨δrm · δrn⟩(r)/⟨δr2⟩, where n and m label distinct bubbles at a distance r, while
δrn and δrm are the respective displacements. Results are compared in Fig. S5(c), where we
can see that the correlation functions do not change significantly with ϕ, revealing that the
correlation properties of the displacement field are similar between all samples.

Figure S5: Displacement correlations. (a) ∆t-dependence of the global MSD at different ϕ
(from [2]). (b) Dependency of the single-bubble MSD on the bubble radius. The samples are
compared at different time delays corresponding to the same global MSD, as indicated by the
horizontal dashed line in (a). (c) Displacement correlation for the different samples evaluated
at time delays corresponding to the same MSD.
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3 Distributions of bubble displacements

For each foam sample, we calculated the distribution of bubble displacements ∆r for increasing
time delays ∆t (from 60 to t∗/10 seconds with a step of 15 seconds) at foam age t∗ = 1800,
2700, and 3600 seconds, as reported in figures S6, S7, and S8 respectively.

For each ϕ and t∗, the probability distribution of bubble displacements systematically shifts
to larger displacements with increasing time delays ∆t [2]. The position of the distribution
peak grows linearly over time: a simple normalization with the lag time ∆t indeed leads to an
excellent data collapse, consistent with ballistic-like bubble motion at short length scales.

This normalization highlights a power-law decay P (∆r,∆t)∆t ∼ (∆r/∆t)−(γ+1), with ex-
ponent γ increasing with ϕ, at bubble displacements right above the maximum peak, before
sharply dropping at displacements of the order of the typical bubble size.

Figure S6: Distributions of bubble displacements for the time window centered around t∗ =
1800 s. Top row: probability distribution of bubble displacements ∆r at different time delays
∆t. The vertical gray bar represents the typical bubble size. Bottom row: same distributions
after normalisation with the time delay.
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Figure S7: Distributions of bubble displacements for the time window centered around t∗ =
2700 s. Top row: probability distribution of bubble displacements ∆r at different time delays
∆t. The vertical gray bar represents the typical bubble size. Bottom row: same distributions
after normalisation with the time delay.

Figure S8: Distributions of bubble displacements for the time window centered around t∗ =
3600 s. Top row: probability distribution of bubble displacements ∆r at different time delays
∆t. The vertical gray bar represents the typical bubble size. Bottom row: same distributions
after normalisation with the time delay.
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4 Apparently steeper power-law decay of pdf(∆r) for

large compressing exponents

As discussed in the main text, if the intermediate scattering function is a compressed exponen-
tial of the kind f(q,∆t) = exp(−(v0q∆t)α), the probability distribution of particle displace-
ments pdf(∆r) is expected to have a power-law tail decaying as ∼ −(1 + γ) with γ = α.

However, in foams at ϕ larger than 65% we observe a steeper power-law decay of pdf(∆r),
with γ > α. This can be ascribed to the finite size of the sample [3] which, at large compressing
exponents, results in an initially steeper decay of the probability distribution of displacements.

In Fig. S9 we report the pdf(∆r) calculated for compressing exponents α between 1 and
1.9. We call γa the apparent exponent measured immediately after the maximum peak. We
can see that, when α is only slightly larger than 1, we immediately recover the right scaling
with γa ≃ αt. For the sample ϕ = 65%, indeed, we experimentally observe the right exponent,
γ = α. However, when α is larger than 1.5, the distributions exhibit a steeper decay with
exponent −(1 + γa), with γa > α, before reaching the right scaling. This explains why in our
samples at higher ϕ we observe a power law tail steeper than expected. We stress that in our
case we could not reach the right scaling as the bubble displacements are restricted to length
scales smaller than the typical bubble size.

Figure S9: The graphs show the pdf of displacements expected for compressed exponential
ISF having a compressing exponent αt. The dashed line marks the expected power-law decay
∼ −(1 + γ) with γ = α. The apparent steeper decay with exponent −(1 + γa) with γa > α,
obtained from a power law fit, is indicated by the magenta solid line.
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