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S1 Interface width
The experimental fluid and the Giesekus constitutive model used in this study appear to be shear-banding
based on the flow curve in Fig. 2 (a). However, in both cases we expect an interface between any two shear
bands and the question arises if this affects the flow. In particular, the interface will influence the flow if
its width is sizable compared to the channel width W 1 and will in the extreme case completely eliminate
any shear bands. Here we look at the width of this interface by considering the channel flow as shown in
Fig. S1. This follows our typical situation where we have a low shear band next to a high shear localization,
whether it is at the wall or next to another low shear band. We estimate this interface width by considering
the extrema of the third-derivative of the velocity profile, following the work of Cheng et al.2 in the context
of a Taylor-Couette flow. We use fifth-order spline interpolation to evaluate the third-order derivative in both
experiment and simulation. The estimated interface widths for Wi ≥ 5 match up to an error likely due to the
interpolation, as should be expected for a shear-banding fluid. However, we find that that these predicted
interface widths are underestimating the apparent interface width. As such, we have increased the estimate
for the simulation by a factor 4 and the experiment by a factor 2. We find that in simulation it accounts for
around 4% of the channel width and around 7% in the experiments, though this is heavily affected by noise
related to the µ-PIV setup. For the experimental data, we use the time-averaged µ-PIV data located upstream
of the lip vortex at the re-entrant corner of the expansion phase. We typically observe two regions of low
shear next to each other away from the wall, with one corresponding to the bulk flow and the other to a
vortex. In this case, the shear localization between the two low shear regions is twice the estimate giving
interface widths of around 0.08W and 0.14W . These interface widths are large compared to some of the
concavities considered and we expect to observe some influence from the interface in these cases.
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Figure S1 Flow profiles at various Wi values and indicated interface width at the wall for a channel flow with width W .
The interface width, predicted to scale as the square root of the stress diffusion Ds, appears to be around 0.04W in the
simulation and around 0.07W for the experiment. The simulations use a straight channel while the experimental data is
taken upstream of the lip vortex located at the re-entrant corner of the expansion phase. Note that the experimental data
is affected by noise related to the µ-PIV setup, particularly in close proximity to the wall.
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S2 Simulation convergence
We show the mesh convergence for a square cavity (L =W , D =W) in table S1 for the mean squared velocity
⟨u2⟩ and elastic potential energy Eel as we increase the number of elements. We use the mesh with 393216
elements (marked by ‘∗’) for the results of our study. Table S1 further shows a single consistent refinement of
this mesh (marked by ‘∗∗’), obtained by splitting every triangle into four triangles using the midpoints of the
sides. We emphasize that while this is possible for this cavity, for larger cavities or expansion-contractions
this poses a computational limitation on our simulations. For consistency between the different geometries,
we use the same grading throughout our study as is presented here for the square cavity. The coarser meshes
listed in table S1 use the same grading scheme as the mesh used to acquire the simulation data. Note that
due to our grading scheme, see Fig. 3, the resulting finite element spaces are not nested. Overall, we observe
that the error increases for larger Weissenberg numbers.

Table S1 Convergence in the mean squared velocity and elastic potential energy at different Weissenberg numbers for a
square cavity (L = W , D = W ) with respect to the number of elements and the degrees of freedom. The mesh resolution
used for the simulations is marked by ‘∗’, with a consistent regular refinement marked by ‘∗∗’

⟨u2⟩/U2 #Element #DOF Wi = 0.1 Wi = 1 Wi = 10
6144 19494 1.13067 0.99992 n/a

24576 75846 1.13158 0.99971 0.98171
98304 299142 1.13156 1.00029 0.98146

∗ 393216 1188102 1.13149 1.00056 0.98163
∗∗ 1572864 4735494 1.13146 1.00063 0.98176
Eel

6144 19494 5.06393 7.14035 n/a
24576 75846 5.13005 7.27127 2.46290
98304 299142 5.17192 7.40904 2.47626

∗ 393216 1188102 5.19198 7.46662 2.49096
∗∗ 1572864 4735494 5.19873 7.48403 2.49880
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S3 Comparison with rounded corner
In this section, we briefly compare the sharp corner we use in our study to a rounded corner with a radius
2×10−2W , i.e., a curvature of 50W−1. Generally, smoothing the corner influences the exact position of the
shear localization and correspondingly the sizes of the flow structures. However, the biggest effect is on
the lip vortex upstream of the expansion phase, which is further discussed in section S4. The overall flow
structures inside the concavities are not significantly affected as is shown in Fig. S2 (a) & (c) for a square
cavity and (b) & (c) for an expansion-contraction flow.
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Figure S2 Velocity magnitude u and streamlines for (a) & (b) a rounded corner with a curvature of 50W−1, and (c) & (d)
a sharp corner used in the rest of our study. We compare (a) & (c) a square cavity as well as (b) & (d) an expansion-
contraction at Wi = 10.
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Figure S3 Lip vortex size xlip over a range of Weissenberg numbers Wi for a fixed length (a) L =W and (b) L = 6W with
varying depths, and for a fixed depth (c) D = W and (d) D = 2W with varying lengths. The data shown is based on the
steady-state simulations and xlip takes discrete values due to the applied extrapolation.

S4 Lip vortex sizes
Here we take a deeper look at the characteristics of the lip vortex that develops at the re-entrant corner
upstream of the expansion plane as the Weissenberg number is increased. We focus on the steady-state
simulations only since the lip vortex in the time-dependent simulation does not significantly differ on average
from the steady-state value. Furthermore, even in the presence of multi-valued solutions at fixed Wi values
from the pseudo-arclength continuation, the lip vortex retains its size and thus this does not pose an issue.
Therefore, we show here the full data collected based on the pseudo-arclength continuation.

In Fig. S3 we present an overview of the lip vortex size xlip as a function of Weissenberg number Wi.
Fig. S3 (a) and (b) show xlip as a function of cavity depth D at fixed values of cavity length L = W and
L= 6W , respectively. Fig. S3 (c) and (d) show xlip as a function of L at fixed values of cavity depth D=W and
D= 2W , respectively. For any single sub-figure, we note that as the depth or length is increased, the lip vortex
size xlip starts to display a similarity solution, becoming independent of that parameter. Upon decreasing
either parameter, the lip vortex disappears altogether as the straight channel is recovered. Additionally, we
observe a general trend towards similar behaviors as either the fixed length or fixed depth is increased,
which is illustrated by comparing Fig. S3 (b) and (d). Ignoring the onset for now, the lip vortex size xlip

eventually decreases with increasing Weissenberg number Wi for cavity flows, specifically for square or deep
cavities, as is best illustrated by Fig. S3 (a). We attribute this decrease to the approximation to a lid-driven
cavity and the associated shear localization. In particular, the curvature of the streamlines forming the lip
vortex is decreased as the shear localization starts to cover the cavity, where the flow no longer infiltrates the
cavity itself, leading to a decrease in the lip vortex size xlip. This is in contrast to the expansion-contraction
flows where xlip continues to increase, albeit at a slower rate than at the onset, shown primarily in Fig. S3
(c) and (d).

The onset of the lip vortex follows a critical power-law of the typical form: xlip ∼ (Wi−Wicrit)
αcrit , with

critical Weissenberg number Wicrit and critical exponent αcrit, before quickly deviating from this at larger
Wi. The values of the critical parameters depend on the exact depth and length of the cavity, but we are
still able to group them for cavity and expansion-contraction flows separately, as is shown in Fig. S4 (a) and
(b), respectively. By extrapolating the limit for large lengths L for cavities or large depths D for expansion-
contractions, we find a universal critical Weissenberg number Wi∞crit ≈ 0.26 and exponent α∞

crit = 0.70 ∼ 0.75
for both cases. This is consistent with the assumption that the limits L → ∞ and D → ∞ are uniform for
the onset of the lip vortex, and hence commute. We emphasize that our results do not suggest that this
applies to the overall flow structures. Instead, for example, we expect that applying the limit in length L
followed by the depth D to result formally in an expansion and a contraction flow, whereas any other flow
structure can be reached by fixing the aspect ratio D/L while taking the limits L → ∞ and D → ∞. However,
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Figure S4 Estimated critical Weissenberg number Wicrit and exponent αcrit for the onset of lip vortices using the simulations
for (a) cavity flows (L ≤ D+W ) and (b) expansion-contraction flows (L > D+W ). The critical behavior is given by
(Wi−Wicrit)

αcrit and assumed to hold up to Wicrit +0.2. The limit for Wi∞crit is extrapolated, while accounting for the spread
in the data, using the model Wi∞crit+γbX γe , X ∈ {L/W, D/W,}, shown by the dashed line. For α∞

crit we indicate the anticipated
spread with dashed lines.
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Figure S5 Estimated critical Weissenberg number Wicrit and exponent αcrit for the onset of lip vortices using the simulations
with rounded corners for (a) cavity flows (L ≤ D+W ) and (b) expansion-contraction flows (L > D+W ) using rounded
corners. We estimate a critical Weissenberg number Wi∞crit ≈ 0.56 with critical exponent α∞

crit ≈ 0.25. See also Fig. S4.

our results do imply an independence between the lip vortex and the flow structures inside the cavity or
expansion-contraction in the limits.

In the limit of straight channels, the critical Weissenberg number Wicrit diverges, which is expected as
the straight channel does not exhibit a lip vortex, while the critical exponent αcrit appears to decay to zero.
However, this last observation is not found for the smoothed corner, see Fig. S5, where we have run fewer
simulations. Therefore, it is not entirely clear if such a trend is real or an artifact of fitting the critical
exponent, which is sensitive to noise and the fitted Wicrit. We note that the smoothed corner leads in general
to a larger Wi∞s;crit ≈ 0.56 and a smaller α∞

s;crit ≈ 0.25. Thus, a smoothed corner reduces the lip vortex size,
which agrees with the Pakdel-McKinley criterion,3,4 as was previously proposed by Poole et al.5 Moreover,
we stress that the formation of a lip vortex is not due to shear localization and has also been predicted using
models with neither shear-banding nor shear-thinning.5,6

S4.1 Comparison to experiment
For the lip vortex size xlip we observe three regimes in the experiments, see Fig. S6, which is similar to
the result by Hwang and collaborators7,8 for the flow of a WLM solution in a sharp bend. At Weissenberg
numbers less than 1.6, no lip vortex is observed in any of the three microchannels studied. The lip vortex
then grows above the critical value Wicrit ≈ 1.6 with a time onset for the flow around Wi ≈ 11. The time
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Figure S6 Experimental lip vortex size xlip against Weissenberg number Wi for the different microfluidic devices. The vertical
lines show the standard deviation in xlip measurements obtained across velocity thresholds ranging from 0.1U to 0.4U ,
with the symbol denoting the mean. Indicated are the three regimes: (i) no lip vortex, (ii) steady flow lip vortex, and (iii)
unsteady flow lip vortex. The inset shows the steady-state simulated lip vortex sizes for comparable channel dimensions.
We stress the different x- and y-axes between experiment and simulation.

dependence primarily appears in the bulk flow, while the lip vortex size xlip measured at the wall does not
necessarily change significantly. Overall, we observe that xlip grows with increasing Wi and that it does not
depend on cavity depth in the range W ≤ D ≤ 2W , which is in agreement with our simulations. Similar to
the simulations, we also note a power-law increase for the lip vortex beyond its onset. This critical region
is larger than it is for simulations with an estimated critical exponent αcrit ≈ 0.6, indicated as a solid black
line in Fig. S6. We remark that the value of the lip vortex size xlip, and thus also the critical exponent
αcrit, depends heavily on the velocity threshold used to measure xlip. Unlike in the simulations, the velocity
cannot be extrapolated to the wall due to a lack of resolution. Instead, we consider the velocity magnitude
compared to a threshold ranging from 0.1U to 0.4U at a distance of 2-3 pixels from the estimated wall, with
the spread shown in Fig. S6.

S6



S5 Pseudo-arclength continuation in short expansion-contractions
We have mentioned in the main text that there are some questions about the validity of the numerical
solution given by the pseudo-arclength continuation. Here we take a second look at this focusing on the
transitional regime, specifically short expansion-contractions, that caused the most numerical difficulties.
We start by noting that the subcritical behavior observed in Fig. 5 (c) implies multiple steady-state solutions
at some fixed Wi values. We have plotted these in Fig. S7 and the solution shown in (a) appears to be the
most physically stable solution, given that it has the lowest elastic Helmholtz free energy. This is also the
solution found by the first order continuation in this case but this solution does not always have the lowest
elastic Helmholtz free energy. Furthermore, as we increase the Wi value the pseudo-arclength continuation
can predict flow structures that appear to be nonphysical, see Fig. S8 (a). We are not entirely sure what
causes this, but it may relate to the mesh resolution that becomes inadequate for large Wi or a potential
failure of the solution method. Indeed, for the geometries with D = 2W and L = 3.5W as well as D = 2.5W
and L = 4W , both of which fall into short expansion-contractions, the mesh does not appear to be resolved
fully for high Wi. In such cases, the pseudo-arclength continuation predicts several subcritical phenomena
that in smaller geometries arise from too coarse meshes. We believe that this is the likely case also for
D = 1.5W and L = 3W shown in Fig. S8 (a), while for D =W and L = 2.5W the flow is closer to S7 (c) even
at higher Wi values, see Fig. S8 (b). On the other hand, it may also simply be a limitation of the Giesekus
model and in a real system we would expect to observe time-dependence, similar to what is seen for the
expansion-contraction flows. To fully answer the question on the validity at higher Wi, more sophisticated
numerical methods are required to handle the computational cost, specifically memory requirement for large
meshes, efficiently.
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Figure S7 Velocity magnitude u and streamlines for the short expansion-contraction (D =W , L = 2.5W ) at Wi = 5 using the
pseudo-arclength continuation. We find three different solution with different elastic Helmholtz free energies: (a) Fel = 4.91,
(b) Fel = 5.06, and (a) Fel = 5.10. These mainly differ in the position of the shear localization.
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Figure S8 Velocity magnitude u and streamlines for the short expansion-contractions with (a) D = 1.5W and L = 3W
at Wi = 15 and (b) D = W and L = 2.5W at Wi = 30 using the pseudo-arclength continuation long after the first order
continuation fails. The predicted flow structures in (a) appear nonphysical, hinting at most likely issues with the mesh
resolution at large Wi.

S6 Flow categories
In the main text we have shown several phase diagrams in Fig. 13 at fixed Wi values in terms of D and
L. In Fig. S9 we show the complete data collected. Several additional flow structures are identified, such
as the expansion-contraction flows with vertical lip vortices. Most data displayed uses the steady-state
simulation with first order continuation. In cases where these failed to converge, we use the steady-state
pseudo-arclength continuation instead. Note that there are some concerns about the validity of these, see
section S5. The time-dependence is determined with separate unsteady simulations using a zero state (zero
velocity, zero pressure, zero elastic stresses) as initialization. The flow rate is then gradually increased
until reaching the desired value. The unsteady simulations are then run until a steady-state is reached or a
periodic behavior became apparent.
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Figure S9 Phase diagrams in length L and Weissenberg number Wi for different fixed depths D based on the comprehensive
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necessary and separate unsteady simulations at fixed Wi starting from zero). Time-dependent flow regimes are marked using
an overlay with diagonals at a 45◦ angle. We further mark Wi values that require the pseudo-arclength continuation using
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