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S1. LIST OF SUPPORTING VIDEOS

Video 1. A 10 µl water droplet moving on a superhydrophobic surface at a speed U = 0.1

mm s−1 is always in contact with the topmost solid fractions, i.e., Cassie-Baxter state. At the

receding end, we observe jagged, discontinuous contact line, indicating the presence of pinning.

In contrast, at the advancing front, contact line is smooth and circular, indicating an advancing

contact angle close to 180◦.

Video 2. Transition from stationary to a speed of U = 30 cm s−1 for the same 10 µl droplet.

Initially the droplet is in contact with the topmost solid fractions. At a later part, the droplet

starts to lift off the surface.

Video 3. Steady motion at U = 30 cm s−1 for the same 10 µl droplet. The droplet completely

lifts off the surface. Contact line is smooth and circular at both the advancing front and receding

end. Contact-line pinning is unimportant.

Video 4. Once the motion is stopped for the same 10 µl droplet, air film beneath the droplet

drains away, and the droplet is again in contact with the topmost solid fractions.

S2. NATURAL FREQUENCY AND SPRING CONSTANT OF CANTILEVER

FIG. S1. Added weight method. (a) Spring constant k can be determined by measuring the cantilever

deflection ∆z after adding water droplets of different weight W . (b) Plot of W against ∆z. Slope

corresponds to k.

The flexular spring constant of the cantilever k can be determined using the added weight

method (Fig. S1a) [1, 2]. We placed masses (e.g., microlitre-sized water droplets) of different
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weights W at the cantilever tip and measured the deflection ∆z optically. The slope of W

against ∆z corresponds to k, since W = k∆z. We obtained k = 43±2 mN m−1 for a cantilever

with length L = 50 ± 1 mm (Fig. S1b).

Alternatively, we can deduce the spring constant from the cantilever natural frequency with

no mass added. A cantilever with a uniform mass per unit length µ has a natural frequency ωo

given by

ωo = 2πfo =
1.8752

L2

󰁶
EI

µ
, (S1)

where L is the cantilever length, E is the Young’s modulus, and I is the second moment of

inertia. At the same time,

k =

󰁵
3EI

L3
. (S2)

By comparing Equations S1 and S2, we can relate ωo and k

ωo = 2.03

󰁵
k

mc

, (S3)

where mc = µL is the mass of the cantilever. Note that Equation S3 differs slightly from the

more familiar ωo =
󰁳

k/m for a simple harmonic oscillator, because the mass mc is distributed

uniformly along the cantilever rather than concentrated at one end.

The simplest way to obtain ωo (and hence k) is to apply an impulse to one end of the

cantilever, for example, by using a piezo-actuator (Fig. S2a) or by using a ball blower. One

end of the cantilever is attached to the piezo-actuator, and the cantilever displacement at the

attached end ∆x′ can be controlled by applying different voltages V (step function) on the

piezo-actuator. This causes the free-end of the cantilever to oscillate with a frequency f ′ close

to the natural frequency fo and a magnitude ∆x that decays with a characteristic decay rate

β, i.e.,

∆x = ∆xo exp (−βt) cos(ω′t− φ), (S4)

where ∆xo is the maximum deflection amplitude, φ is phase of the oscillation, and ω′ = 2πf ′ =
󰁳

ω2
o − β2 is the observed frequency. Here, we have assumed that β is small and the system is

underdamped, and if β ≪ ωo we can make the approximation ω′ = ωo. Figure S2b, c shows

the free decay for the cantilever of length L = 50 mm (same as in Figure S1) and mass mc =

2.7 ± 0.2 mg for two different ∆xo = 12 and 23 µm, respectively. We found that fo = 42.6±0.1
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Hz and β = 13.0 ± 0.3 s−1, which translates to the spring constant k = 0.243 mω2
o = 47 ± 1

mN m−1.

FIG. S2. Free-decay method. (a) To determine the natural frequency fo of the cantilever, we use a

piezo-actuator to give an impulse (of displacement ∆x′) at one end of the cantilever. The deflection

at the free end ∆x can be monitored using a confocal chromatic sensor. The free end will oscillate at

a frequency close to fo and with a characteristic decay rate β, as shown in (b) and (c) for two different

∆x′. Dots are experimental data, while red line is the best-fit for Equation S4.

The values of k obtained by the two methods outlined above are consistent with one another,

as summarized in Table S1. The spring constant is not affected by the addition of the damping

system described in this manuscript.

TABLE S1. Determining cantilever spring constant k using different methods

Methods fo (Hz) β (s−1) k (mN m−1)
Added weight - - 43 ± 2
Free decay 42.6 ± 0.1 13.0 ± 0.3 47 ± 1
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S3. EQUATION OF MOTION FOR DIFFERENT DAMPINGS

FIG. S3. Schematic of a water droplet during each cycle of force measurement (in one direction).

The equation of motion for the droplet of mass m is given by

m∆x(t)′′ + b∆x(t)′ + k∆x(t) = Ffric (S5)

where ∆x(t) is the cantilever displacement and k∆x(t) corresponds to the force measured by

the cantilever system F (t), i.e., the force response function in the main text (Fig. 3). In the

limit of long time t ≫ τ where τ is some characteristic response time, ∆x(t) → Ffric/k and

F (t) → Ffric. However, the evolution of ∆x(t) and hence F (t) with time t depends on the

amount of damping, in particular on b/
√
4km.

For an underdamped system b/
√
4km < 1, the solution is given by

∆x(t) = ∆x0 e
−(b/2m) t cos(ω′t+ φ) + Ffric/k (S6)

where ω′ =
󰁳

ω2
o − b2/4m2 ≈ ωo is the oscillation frequency and where ωo =

󰁳
k/m is the can-

tilever’s natural frequency. ∆x0 and φ are fitting parameters that depend on initial conditions.

Equivalently,

F (t) = F0e
−(b/2m) t cos(ωot+ φ) + Ffric (S7)

The force curve will therefore dampens with an exponential decay envelope exp (−t/τ), where
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τ = 2m/b is the characteristic decay/response time.

For a critically damped system b/
√
4km = 1, the cantilever system will respond with the

fastest theoretical response time τ = 1/ωo such that

F (t) = (F0 + F1t) e
−ωot + Ffric

≈ F0 exp (−ωot) + Ffric for t ≫ 1/ωo

(S8)

where F0 and F1 are again fitting parameters.

Increasing the damping further to b/
√
4km > 1 results in an overdamped system such that

F (t) = F0 exp(−r0t) + F1 exp (−r1t) + Ffric (S9)

where

r0 =
b

2m

󰀣
1−

󰁵
1− 4km

b2

󰀤

≈ k

b
for b/

√
4km ≫ 1

(S10)

and

r1 =
b

2m

󰀣
1 +

󰁵
1− 4km

b2

󰀤

≈ b

m
for b/

√
4km ≫ 1

(S11)

. Since r1 ≫ r0, Equation S9 can be simplified to

F (t) ≈ F0 e
−r0t + Ffric for t ≫ m/b

≈ F0 e
−(k/b)t + Ffric

(S12)

.
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The force response function can therefore be well-approximated as

F (t) ≈

󰀻
󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰀽

F0 e
−(b/2m)t cos(ωot+ φ) + Ffric for b√

4mk
≪ 1

F0 e
−ωot + Ffric for b√

4mk
≈ 1

F0 e
−(k/b)t + Ffric for b√

4mk
≫ 1

(S13)

with a response time of

τ ≈

󰀻
󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰀽

2m/b for b√
4mk

≪ 1

1/ωo for b√
4mk

≈ 1

b/k for b√
4mk

≫ 1

(S14)

.
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S4. RICM IMAGES

FIG. S4. Droplet base visualized using Reflection Interference Contrast Microscopy. (A) At low U

= 0.1 mm s−1, droplet is in contact with the topmost solid fractions. The advancing (Adv.) front

and the receding (Rec.) ends are indicated on the image. Contact-line is not smooth at the receding

end. (B) In contrast, at high U = 30 cm s−1, droplet lifts off from the surface. Droplet base profile is

smooth and circular. Arrows indicate motion of the surface. Scale bars for A and B are 0.5 mm.
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S5. COMPARISON WITH LITERATURE DATA

FIG. S5. Comparison with literature data. Data from Fig. 5a in Backholm et al. (2024) (unfilled

circles) are superimposed with our data (filled square markers). A scaling of Fcrit ∝ U2/3 in the limit

of high speed U explains both datasets very well.

Backholm et al. (2024) recently reported a similar increase in Fcrit with U on superhydropho-

bic surface when U > 1 cm s−1, and they propose a scaling of Fcrit ∝ U . We have superimposed

their data (in non-dimensional forms Fcrit/2rγ vs. Ca) with ours in Fig. S5. A scaling of

Fcrit ∝ U2/3 clearly explains both datasets much better than Fcrit ∝ U .
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J. V. I. Timonen, and R. H. A. Ras, “Toward vanishing droplet friction on repellent surfaces,”

Proc. Natl. Acad. Sci. USA 121, e2315214121 (2024).

S-9


