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S1 Model and Simulation Details

We consider an isolated flexible ring polymer of size N = 200, which is subjected to simple
shear flow. Neighboring monomers are connected by harmonic spring potential, which is
defined as :

Uh =
1

2
κ(rij − l0)

2 (1)

where, κ is the spring constant and l0 is the equilibrium separation between the monomers.
The non-neighboring monomers interact via purely repulsive L-J potential (WCA) to prevent
overlap between them.

ULJ =

{
4ϵ
[(

σ
r

)12 − (σ
r

)6
+ 1

4

]
for r = |ri − rj| < 2

1
6σ

0 otherwise
(2)

Here, ϵ is the strength of the repulsion and σ is the diameter of each monomer.

To include activity on the polymer we apply two types of tangential force on the polymer.
In type-I activity, a tangential force is applied using the following definition:

F type-I
a = ftt̂. (3)

where t̂ = (ri+1−ri−1)/ | ri+1−ri−1 | is the unit vector along the tangent to the backbone of
ith monomer. It is to be noted that in equation(3), i.e. in type-I activity, the magnitude of
active force remains constant irrespective of the shape fluctuations of the polymer contour
because the force is applied along the unit vector. In a separate set of simulations, we adopt
another form of the active force defined as :
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F type-II
a = ftt. (4)

ti = (ri+1 − ri−1)/2l, where l =| ri+1 − ri | is the bond length. Note that type-II activity
constitutes the active force that is affected by the local curvature along the contour.

Figure S1: This is the reproduction of Figure 1 of the main text, showing the schematic
representation of the active ring under the shear flow.

Fig. S1 shows the schematic representation of our active ring polymer subjected to simple
shear flow along the x-direction. Because of the shear flow, the velocity field is modified by

a velocity gradient tensor given by : ∇u =

0 γ̇ 0
0 0 0
0 0 0

, γ̇ = dux

dy
is the constant shear rate.

Therefore, for each ith bead the equation of motion is given:

mr̈i = −∇Ui + Fi
s + Fi

a − βṙi + ξi (5)

Fs = β∇u · r is the force due to shear flow, Fa is the active force, β is the friction coefficient
and ξ is the Gaussian white noise with zero mean and unit variance and satisfies the relation
⟨ξi(t1) · ξj(t2)⟩ =

√
6βkBTδijδ(t1 − t2).

The strength of the activity is measured by the activity number Ac = ftσ
KBT

. To distinguish
between the two forms of active force, we use Ac-I and Ac-II to measure the activity strength
for type-I and type-II rings, respectively. Apart from that, we use the well-known quantity
called Weissenberg number (Wi) to account for the strength of the shear flow. Wi = γ̇τ0,
where τ0 is the longest relaxation time of the passive ring without shear. To calculate τ0,
we start from the maximum extended configuration of the ring polymer in the x-direction,
for which the fractional extension ∆x/L ≈ 0.5, and let the system evolve without shear and
active force. The ratio ∆x/L decays with time until it reaches saturation. We fit the tail
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end of the decay (when ∆x/L ≤ 0.2) with the expression (∆x/L)2 = Aexp(−t/τ0) + B to
obtain the longest relaxation time τ0 ≈ 7500.

Simulation Parameters: In the present study, the ring polymer is placed near the centre of a
cubic box of size 200× 200× 200. All simulations are performed at a constant temperature
of the thermal bath with KBT = 0.1 and ϵ = 0.1. The equilibrium separation between
monomers is l0 = 1.25σ, where σ = 2 is the diameter of each bead. The spring constant κ
has been taken to be 250, 1000, 3000 depending on the shear rate to keep l0 fixed. To evolve
the system, we integrate the equation of motion using the velocity-Verlet scheme in steps of
dt = 10−3 and dt = 5 × 10−4. The polymer is allowed to relax under shear flow for more
than 10×τ0, in more than 40 independent sets of simulations. Shear is applied to the system
using Lees-Edwards boundary conditions.

S2 Structural analysis

In Fig. S2(a), we show the effect of type-I and type-II active force on polymer size in the
absence of shear. Without shear, both kinds of activity eventually lead to the collapsed
state of the ring. However, a higher magnitude of activity is required to trigger the collapse
in type-II (Ac-II = 10 onwards) than type-I (Ac-I = 5 onwards). Once the globular state
is reached, the gyration radius remains similar in both cases (Fig. S2(a)). As shown in
our previous study [2], the collapse of the ring is due to the formation of local hairpin-like
structures. In Fig. S2(b), we plot the bond-correlation function defined as β(s) = ⟨bi+s ·bi⟩,
where bi = ri+1−ri is the bond vector. The negative minimum in β(s) is a signature of such
local hairpin structures, which are present in Ac-I ≥ 5 and Ac-II ≥ 10. Further, it is also
observed in Fig. S2(c) that F type−II

a takes a longer time to collapse the ring as compared to
F type−I
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Figure S2: (a) Comparison of polymer compaction for the two kinds of active forces without
shear (Wi = 0). (b) Bond correlation of type-I and type-II active ring without shear(Wi =
0). (c) Rg vs t for Wi = 0 case showing faster collapse in type-I active ring.

The gyration tensor (Gmn) analysis of the ring in the presence of shear flow shows a con-
siderably distinct effect of the kind of microscopic activity on the polymer structure. In
Fig. S3, we show the scaled diagonal elements of the gyration tensor, 3Gxx/R

2
g0, 3Gyy/R

2
g0
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and 3Gzz/R
2
g0 where R2

g0 is the square of gyration radius without shear. Passive ring poly-
mers show a steady rise in Gxx with increasing Wi as they get stretched in the flow direction.
This elongation in the x-direction occurs at the expense of the polymer’s compaction along
the gradient (y) and vorticity (z) direction, as seen in Fig. S3(b) and (c). The type-II ring
displays a similar behaviour of Gmm as that of passive with a small deviation for lower Wi.
However, type-I rings show a sudden transition from globular to completely extended state
with Gxx saturating after Wi ≈ 150. In the gradient direction, Gyy also displays a small
region of non-monotonicity at low Wi. In this region, the globular ring polymer unfolds
steadily, thereby increasing Gyy and reaching a maximum value. Further increasing Wi
leads to compaction along the y-direction, and Gyy decreases as Gxx increases rapidly. In-
terestingly, we observe a swelling of type-II ring polymer in the vorticity direction compared
to type-I shown in the Gzz plot.
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Figure S3: Gxx, Gyy and Gzz as a function of Wi for both kind of tangential activity.
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Figure S4: Time evolution of Rg for passive and Ac-I, Ac-II = 5.

In Fig. S4 and Fig. S5, we present the time series of Rg, which has been used to calculate
probability distribution (P (Rg)) in the main text as well as in Fig. S6 and Fig. S7. The
passive ring in Fig. S4(a) spans a wide range of Rg values, which leads to a broad distribution
of P (Rg). Distinct open and closed states for type-I activity are also visible here. For
Ac-I = 10, the ring remains in the globular state at Wi = 15 and stretches completely
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Figure S5: Time evolution of Rg for Ac-I, Ac-II = 10 at Wi = 15 and 75.
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Figure S6: Distribution of Rg for Ac-I = 5 and 20 at different Wi values.
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Figure S7: Distribution of Rg for Ac-II = 5 and 20 at different Wi values.

at Wi = 75. It should be noted that type-I remains very stable in either collapsed or
stretched configurations, which gives rise to a bimodal distribution of Rg. This feature is
absent in type-II rings, which makes a smooth transition between compact and elongated
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states. In the subsequent figures (Fig. S6 and Fig. S7) we present the P (Rg) for Ac-I = 5, 20
and Ac-II = 5, 20, which shows similar features as discussed above. We also calculate the

standard deviation of the probability distribution P (Rg) as σ(Rg) =
√∑n

i=1(R
i
g − ⟨Rg⟩)2/n,

which is shown in the main text. The binder cumulant for Rg distribution is defined as

BC = 1− ⟨R4
g⟩

3⟨R2
g⟩2 and has been discussed in the main text.

S3 Tumbling Properties

Figure S8: Snapshot of an active ring polymer showing tumbling motion at Wi = 370. Time
is denoted in increasing order from t = 0 to t = τtb. The red segment in the ring is for visual
aid.

Snapshots of a complete tumbling event are shown in Fig. S8. The polymer undergoes one
tumbling cycle in time interval t = 0 to t = τtb, where τtb is the characteristic tumbling
time. As discussed in the main text, the characteristic tumbling time τtb as well as tumbling
frequency ftb can be obtained from the cross-correlation function given as:

Cxy(t) =
⟨δGxx(t0)δGyy(t0 + t)⟩
⟨δG2

xx(t0)⟩⟨δG2
yy(t0)⟩

(6)

where, Gαα are elements of the gyration tensor and δGαα = Gαα − ⟨Gαα⟩ and δG2
αα =

⟨G2
αα⟩−⟨Gαα⟩2 . In Fig. S9, we report the Cxy(t) as a function of time for passive, Ac-I = 10
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Figure S9: Cross-correlation (Cxy) of the fluctuations in Gxx and Gyy for passive, Ac-I = 10
and Ac-II = 10 case.

and Ac-II = 10, which is then utilized to calculate the tumbling frequency ftb as defined
in the main text. As discussed there, ftb shows similar scaling in type-I and type-II rings;
however, it is clear from Fig. S9 that the amplitudes of Cxy in type-I rings are much smaller
as compared to passive and type-II rings. The amplitude can be related to the smoothness
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of tumbling. We quantify the smoothness from the height of the positive and negative peaks
and define it as Qtb = C+

xy −C−
xy, where C

+
xy and C−

xy are the heights of positive and negative
peaks of Cxy respectively. Qtb shown in Fig. S10 is observed to be higher in passive and
type-II rings as compared to type-I rings. The Cxy plot, along with their Qtb values, suggest
that the tumbling events are less smooth in the case of type-I, i.e. the constant active force
case. Here, the active force always tries to reduce the fluctuations in the polymer size along
the gradient direction, which in turn makes δGyy small. Although this mechanism does
not affect the tumbling frequency, rather it makes the tumbling events less smooth. On
the other hand, when activity varies according to the local shape of the polymer backbone
(type-II), those random fluctuations (δGyy) are sustained, which consequently leads to very
clear tumbling events.
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Figure S10: Smoothness of tumbling Qtb for the two case of tangential activity.

S4 Tank-Treading Properties

Figure S11: A representative snapshot of an active ring polymer showing Tank-treading
motion. Time is denoted in increasing order from t = 0 to t = τtt. The red segment in the
ring is for visual aid.

Ring polymers subjected to shear flow show a peculiar motion known as tank-treading (TT),
in which the ring maintains its shape and rotates steadily about its centre of mass. TT
motion occurs when the polymer is completely stretched in the flow-gradient plane with a
high-velocity gradient across monomers. In Fig. S11, we show the snapshots of an active
ring undergoing a complete tank-treading cycle. As evident from the snapshots, the segment
coloured in red moves from the left side (at t = 0) to the right side (at t = 0.5τtt) and
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again comes back to the left side after completing the complete TT cycle (at t = τtt). To
comprehend the TT cycle’s characteristic time or frequency, we track a monomer’s motion
in the following way. For a given bead i, we define Xi = xi/L, where xi = (ri − rcm)x is the
x-position of ith monomer in the centre of mass (rcm) reference frame and L is the distance
between the extreme beads along the longitudinal axis of the ring. A pictorial representation
of xi and L is given in Fig. S12.

Figure S12: Pictorial representation of the longitudinal axis L shown in green. x is the
projection of an arbitrary monomer’s position on the longitudinal axis.
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Figure S13: Variation of xi/L for Ac-I = 5 at Wi = 370, 3700 & 7500
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Figure S14: Variation of xi/L for Ac-II = 5 at Wi = 370, 3700 & 7500.

Fig. S13 shows the variation of xi/L for Ac-I = 5 at three different Wi values. At Wi = 370,
Xi displays a nice oscillatory behaviour with time as the monomers move along the elliptical
path on the contour during the TT cycle (Fig. S13(a)). However, as we increase Wi to 3700
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(Fig. S13(b)), competition between the constant active force and shear flow begins to appear,
and the TT motion slows down. This phenomenon is evident from the irregular oscillation
in Xi in Fig. S13(b). Upon further increasing the Wi, shear dominates the activity, and TT
motion is restored. In contrast, for Ac-II = 5 shown in Fig. S14, this competition between
the active force and shear is hugely suppressed, and the ring exhibits TT motion at all values
of Wi.

We define the time auto-correlation of the fraction xi/L as:

Cxi/L(t) =
⟨Xi(t0)Xi(t0 + t)⟩

⟨X2
i (t0)⟩

(7)

and plot it in Fig. S15. The secondary peak in the plot of Cxi/L(t) is used to identify τtt,
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Figure S16: Scaled tank-treading frequency for type-I and type-II active rings at different
Wi obtained from Cx/L.

which is the characteristic time of tank-treading motion. We obtain scaled tank-treading
frequency ftt = τ0/τtt. In Fig. S15, we report the Cxi/L for passive, Ac-I = 5 and Ac-II = 5
at two different Wi. The corresponding tank-treading frequency for type-I and type-II active
rings has been shown separately in Fig. S16. For the passive ring, ftt increases monotonically
with an increase in Wi following a power law scaling of ∼ Wi0.72.

S9



 0

 5

 10

 15

 20

100 10000 20000 30000

(a)

A
c
-I

Wi

 0

 5

 10

 15

 20

100 10000 20000 30000

 1

 10

 0

 5

 10

 15

 20

100 10000 20000 30000

(b)

A
c
-I

I

Wi

 0

 5

 10

 15

 20

100 10000 20000 30000

 1

 10

Figure S17: Phase diagram of the tank-treading frequencies (ftt) for different values of Wi
and activity strength. The values of the colour gradient represent numerically the scaled ftt
in (a) type-I and (b) type-II active rings.

On the other hand, the active rings show a completely different response in TT frequency
when Wi is increased. It is noteworthy that, unlike the passive case, the active ring at
lower Wi exhibits a plateau in the tank-treading frequency ftt whose magnitude increases
with activity strength. This is due to the fact that the tangential active force alone can
drive the ring monomers into the TT motion. Therefore, for smaller Wi, the observed TT
is dominated by the active forces. Interestingly, at the intermediate Wi, the type-I and
type-II exhibit a completely different trend in ftt. As discussed in the main text, type-I
ring experiences a competition between the active tangential force and the shear force that
impacts their TT motion. With the increase in Wi, this competition becomes substantial,
and ftt starts decreasing until it reaches a minimum. To understand this minimum, please
refer to (Fig. S15(b)). One can see that at Wi ≈ 3700, the oscillations in Cxi/L are feeble
compared to Wi ≈ 750, indicating the stalling of the TT motion. Such stalling is not
observed for type-II activity. To summarize the distinct tank-treading properties of the two
activities, we have added a phase diagram of ftt at different Wi and Ac for both activities.

S5 Simulation including hydrodynamic interactions

The above proposed model does not include any hydrodynamic interaction (HI) that may
have a role to play in real systems. To check the robustness of shear to act as a tool to
differentiate the activities even in the presence of HI, we perform Brownian dynamics simu-
lations, including hydrodynamic interactions. In the implicit solvent method, hydrodynamics
is approximated via a configuration-dependent diffusion coefficient tensor. We represent the
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diffusion tensor by the Rotne-Prager-Yamakawa (RPY) tensor, which takes the form [5, 4]:

Dij =


(

kBT
6πηa

)
I for i = j(

kBT
8πηrij

) [(
1 + 2a2

3r2ij

)
I+

(
1− 2a2

r2ij

rijrij
r2ij

)]
for i ̸= j and rij ≥ 2a(

kBT
6πηa

) [(
1− 9rij

32a

)
I+

3rijrij
32arij

]
for i ̸= j and rij < 2a.

(8)

Here, a is the hydrodynamic radius of each bead, which is approximately taken as the bead
diameter σ, and η is the solvent viscosity, which is related to the drag coefficient by the
relation β = 6πηa. With the above description of the solvent flow, we solve the Langevin
equation in the overdamped limit and use the following stochastic differential equation for
each bead:

dri =

(
∇u · ri +

N∑
j=1

Dij · Fj

kBT

)
dt+

√
2dt

i∑
j=1

αij ·Gj. (9)

Here, ∇u is the previously defined velocity gradient tensor, and F is the net force on a
polymer bead, including the active force as defined in the equations 3 and 4. G is a random
Gaussian vector with zero mean and unit variance. The elements of D are positive definite
by construction, which allows the Cholesky decomposition given by D = α · αT . Previous
works on passive polymers[1, 3] have shown a faster relaxation in the presence of HI, which
we recover in our case as well. For a passive ring polymer with N = 100, simulations in the
absence of shear flow (γ̇) indicate that the polymer relaxation is faster when hydrodynamic
interaction is considered. We find the relaxation time for the passive polymer to be τHI+

0 ≈
1200 with HI, while τHI−

0 ≈ 5000 without HI.

To test the effect of HI on the ability of shear to distinguish the two activities, we plot the
probability distribution P (Rg) in Fig. S18 with and without HI for N = 100 and Wi = 600.
In this Wi regime, the polymer prefers to be in the open state. Fig. S18 reveals that both
in the presence and absence of HI, the type-II activity possesses finite weight for lower Rgs,
which is not the case with type-I activity. That is, the probability values for smaller Rg

increase at the cost of probability values at higher Rg. This indicates that, again, in the
presence of HI, the type-I active ring has fewer fluctuations in the open state than type-II.

The stalling or slowing down of the tank-treading motion in the type-I active ring is also
found to be consistent in the presence of HI. Fig S19 shows the time-series of xi/L for
Ac-I = 10 and Ac-II = 10 at two different Wi. At Wi = 600, the TT motion in both type-I
and type-II active rings are similar (Fig.S19a). However, upon increasing Wi to 1200, the
frequency of oscillation in xi/L increased for type-II, whereas it decreased drastically in the
type-I ring. This again indicates the stalling of TT motion as observed before without HI.
Therefore, the stalling is purely related to the activity, where tank-treading due to shear
tries to balance the tank-treading due to activity.

It must be noted that though the results after the inclusion of HI match qualitatively with
previous results without HI, the values of Wi, where we observe closed and open states in
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Figure S19: Variation of xi/L of the N = 100 active ring at (a)Wi = 600 and (b)Wi = 1200.

the ring, are different. We observe that the shear rate required to open the active polymer
from its closed state is higher in the presence of HI.

Our claim is only that both activities can be differentiated by applying a shear flow to the
active chromatin polymer. Whether with HI or without HI, it is clear that the polymer will
transition from a closed to an open state and exhibit different behaviour as a function of
Wi. For our conclusion, the precise value of Wi does not matter; what matters is only the
appearance of distinct behaviour as we vary the parameters.
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S6 Effect of non-uniform active force

The molecular motors acting on chromatin may have some diversity/stochasticity in terms
of their activity strength. To address this issue, we separately model an active loop polymer
system where the motor activity (type-I or type-II) is taken to be non-uniform. To bring
this non-uniformity we sample ft of equation 3 and 4 from a uniform distribution such that
Ac ∈ [9, 11] with mean Ac = 10. We compare the Rg distribution of this motor-chromatin
system with Ac-I = 10 and Ac-II = 10 in Fig. S20. It is evident that even in the presence
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Figure S20: Distribution of Rg at Wi = 75 with stochastic active force, for Ac-I, II = 10.
Just like in the uniform activity case, the difference between type-I and type-II activities
persists even with non-uniform activity.

of non-uniform forcing of motors, the type-I and type-II activities retain their features. In
fact, the non-uniformity enhances the difference between the two types. The type-I activity
is roughly as open as before, whereas type-II becomes more deformable in the open state.
Just like in the uniform activity case, the difference between type-I and type-II activities
persists even with non-uniform activity.
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S7 Movie Description

• Movie 1 (movie1.mp4): Tumbling motion in type-II active ring at Wi = 370 and
Ac-II = 10.

• Movie 2 (movie2.mp4): Pure tank-treading motion of type-I active ring at Wi = 370
and Ac-I = 10. For clear visualization of TT motion, a small segment of the ring has
been marked in red colour.

• Movie 3 (movie3.mp4): Stalling of type-I active ring at Wi = 7500 and Ac-I = 10.

• Movie 4 (movie4.mp4): Type-II active ring showing a mix of tumbling and tank-
treading dynamics at Wi = 7500 and Ac-II = 10.
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