Supporting Information

Probing the molecular determinants of the activation of toll-like receptor 2/6 by amyloid nanostructures through directed peptide self-assembly

Nadjib Kihal^{a,b,c}, Marie-Jeanne Archambault^{a,b}, Margaryta Babych^{a,b}, Ali Nazemi^{a,c}, and Steve Bourgault^{*a,b} ^aDepartment of Chemistry, Université du Québec à Montréal. C.P.8888, Succursale Centre-Ville, Montréal, H3C 3P8, Canada ^bQuebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Québec, Canada ^cQuebec Centre for Advanced Materials, QCAM, Montreal, Canada

*Corresponding authors: Steve Bourgault, C.P. 8888, Succursale Centre-Ville, Montréal, H3C 3P8, Canada; e-mail address: <u>bourgault.steve@uqam.ca</u>

TABLE OF CONTENTS

Fig. S1 HPLC and MS analysis of C -amidated I_{10} peptides	3
Fig. S2 HPLC and MS analysis of C-caboxylated I ₁₀ peptides	4
Fig. S3 Effect of adding 1% acetic acid to peptide assemblies for adsorption to AFM mica	5
Fig. S4 AFM image and topography analysis of IAPP amyloid fibrils	6
Fig. S5 Effect of diluting peptide assemblies	7
Fig. S6 Effect of lyophilisation on the stability of peptide assemblies	8
Fig. S7 ATR-FTIR spectra of <i>C</i> -carboxylated and <i>C</i> -amidated I ₁₀ peptides	9
Fig. S8 ANS fluorescence spectra of I ₁₀ peptides	10
Fig. S9 Cytocompatibility of monomeric and assembled peptides	11

	Peptides	Formu	ıla	Exact mass	m/z	(min)	PPM Error	m/z	(%)
	K ₂ -I ₁₀ -CONH ₂	C ₆₅ H ₁₀₉ N ₂	₂₁ O ₂₃	1551.8005	776.9075	3.92	0.1	776.9076	>98
	K-I ₁₀ -CONH ₂	$C_{59}H_{97}N_{1}$	₉ O ₂₂	1423.7056	712.8601	4.91	0.1	712.8602	>98
	I ₁₀ -CONH ₂	$C_{53}H_{85}N_{1}$	₇ 0 ₂₁	1295.6106	648.8126	4.43	0.6	648.813	>98
	R-I ₁₀ -CONH ₂	$C_{59}H_{96}N_{2}$	1 ⁰ 22	1451.7171	726.8631	4.13	0.3	726.8637	>98
	E-I ₁₀ -CONH ₂	$C_{58}H_{92}N_{1}$	₈ 0 ₂₄	1424.6532	713.3339	4.46	0.8	713.3345	>98
Fig.	S1	HPLC	and	MS	analysis	of	C-amidated	I ₁₀	pepti

Peptides	Formula	Exact mass	Calculated <i>m/z</i>	RT (min)	PPM Error	Observed <i>m/z</i>	Purity (%)
K ₂ -I ₁₀ -COO ⁻	C ₆₅ H ₁₀₈ N ₂₀ O ₂₄	1552.7845	777.3995	3.93	1.7	777.4009	>98
K-I ₁₀ -COO ⁻	$C_{59}H_{96}N_{18}O_{23}$	1424.6896	713.3521	4.15	0.8	713.3526	>98
I ₁₀ -COO [_]	$C_{53}H_{84}N_{16}O_{22}$	1296.5946	649.3046	4.45	-1	649.304	>98

Fig. S2 HPLC and MS analysis of C-caboxylated I_{10} peptides.

Fig. S3. Effect of adding 1% acetic acid to peptide assemblies for adsorption to AFM mica. K- I_{10} -CONH₂ peptide was assembled for 1 week in 20 mM Tris-HCl buffer (pH 7.4) at a peptide concentration of 1 mM and under continuous rotatory agitation at RT. Peptide assemblies were diluted to reach a final concentration of 50 μ M in (A) 1% acetic acid and (B) deionized water and immediately spotted onto a freshly cleaved mica.

Fig. S4 AFM image and topography analysis of IAPP amyloid fibrils.

Fig. S5. Effect of diluting peptide assemblies. K-I₁₀-CONH₂ peptide was assembled for 1 week in 20 mM Tris-HCl buffer (pH 7.4) at a peptide concentration of 1 mM and under continuous rotatory agitation at RT. Peptide assemblies were diluted in 20 mM Tris-HCl, pH 7.4, to reach a final concentration of 50 μ M. The 50 μ M peptide solution was analysed immediately (A) or after 3 h incubation at RT under quiescent conditions (B) by AFM imaging (A,B) and CD spectroscopy (C).

Fig. S6. Effect of lyophilisation on the stability of peptide assemblies. $K-I_{10}$ -CONH₂ peptide was assembled for 1 week in 20 mM Tris-HCl buffer (pH 7.4) at a peptide concentration of 1 mM and under continuous rotatory agitation at RT. Peptide assemblies were immediately (A) analysed by AFM imaging or lyophilised (B) before being resuspended in deinozied water and analyse by AFM.

Fig. S7 ATR-FTIR spectra of *C*-carboxylated and *C*-amidated I_{10} peptides. Data were acquired after 1 week of incubation in 20 mM Tris-HCl buffer (pH 7.4) at RT.

Fig. S8 ANS fluorescence spectra of I_{10} peptides. The data were acquired at 0 h and after 1 week of incubation in 20 mM Tris-HCl buffer (pH 7.4) at RT.

Fig. S9 Cytocompatibility of monomeric and assembled peptides. DC.2.4 cells were incubated for 24 h with increasing concentrations of monomeric (0 h pre-incubation) or assembled (168 h pre-incubation) peptides, and viability was measured by means of the resazurin-based metabolic assay. Data represent the Mean \pm S.E.M. of at least three individual experiments performed in triplicate.