Supplementary Information

Carboxymethyl cellulose-stabilized calcium phosphate particles for injectable hydrogel-based bone tissue engineering

Piyaporn Srisura^{a#}, Yuwaporn Pinyakit^{a#}, Umphan Ngoensawat^a, Pongsakorn Yuntasiri^a, Khoiria Nur Atika Putri^b, Theerapat Chanamuangkon^c, Waranyoo Phoolcharoen^d, Varol Intasanta^e, and Voravee P. Hoven^{a,f,g*}

^aDepartment of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, Thailand, 10330

^bProgram in Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.

^cBiomaterial Testing Center Faculty of Dentistry, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, Thailand, 10330

^dDepartment of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand; Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand.

^eNanohybrids and Coating Research Group, National Nanotechnology Center, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand

^fCenter of Excellence in Materials and Biointerfaces, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, Thailand, 10330

^gCenter of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand

*Piyaporn Srisura and Yuwaporn Pinyakit contributed equally to this work.
*Corresponding author Email: <u>vipavee.p@chula.ac.th</u> (Voravee P. Hoven)

Page	
3	Preparation of CMC-stabilized calcium phosphate particles via two-step wet
	chemical process
4	Fig. S1 XRD patterns of CaP/CMC prepared by the two-step wet chemical process
	at different maturing time.
5	Fig. S2 EDS spectra on randomly selected area of CaP (top) and CaP/CMC (bottom)
	particles and their corresponding elemental composition.

Preparation of CMC-stabilized calcium phosphate particles via two-step wet chemical process

To prepare the CaP particles, 20 mL of calcium nitrate solution was measured into a 100 mL beaker and placed under an overhead stirrer set to 300 rpm. Subsequently, 20 mL of ammonium phosphate solution was added dropwise over a period of 5 min. Ammonia solution was then added until the pH reached 10, and the mixture was stirred at room temperature with varied maturation times, 5 min, 30 min, 1 h, 3 h, and 6 h. The CaPs were then separated from the solution by centrifugation at 5000 rpm and washed with Milli-Q water three times until the pH of the washing medium became neutral. The CaP particles were then resuspended in a 20 mL solution of Milli-Q water containing CMC. After stirring for 30 min, the excess solution was removed by centrifugation at 300 rpm, and the particles were collected and freeze-dried for XRD characterization.

Fig. S1. XRD patterns of CaP/CMC prepared by the two-step wet chemical process at different maturing time.

Fig. S2 EDS spectra on randomly selected area of CaP (top) and CaP/CMC (bottom) particles and their corresponding elemental composition.