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1 Linking modes in P1 and P2 lattices

Fig. S 1 Shape and linking pattern of the catenated membranes
with n = 68 rings. Linking number associated to each of the linking
modes of every ring with three neighbors. The sketches on the right
illustrate the convention used to orient the rings and associate a
linking number to the central ring of three different local neigbor-
hoods of P1 and P2 patches, after ref. [40] in the main text. In the
broader context of a chainmail patch, each ring takes part to circular
concatenated paths. The summed linking number of oriented rings
in any such closed path is topologically conserved. This property
makes P1 and P2 chainmails topologically inequivalent.

Journal Name, [year], [vol.],1–11 | 1

Supplementary Information (SI) for Soft Matter.
This journal is © The Royal Society of Chemistry 2024



2 Simulation details and statistics
As described in the main text, for each ring composition
and linking pattern, we run two simulations, with duration
2.5×105τ and 3.5×105τ . These simulations were prepared
by fixing the connectivity in the initial configuration with a
homemade code, and then relaxing each of them indepen-
dently via a soft potential

Uso f t(r) = A
[

1+ cos
(

πr
rc

)]
, (1)

that describes the interaction between pairs of particles
at a distance r < rc, where rc = 1σ is the cutoff radius and
A = 1ε is the energy constant. This relaxation is meant to
avoid overlaps between atoms before initiating the Langevin
dynamics simulation.

Fig. S 2 Characteristic relaxation times: For each composition and
linking pattern, we first run a 2.5×105τ simulation. We then test
the convergence of the measured properties running a simulation of
3.5×105τ. Here we show as an example the global R2

g of the fully
rigid composition with P1. The inset displays the logarithmic scale.
The relaxation time is roughly 5×104τ, which is the time that we
discarded for the analysis.

For the properties presented in this work (µ), and ex-
cept otherwise indicated, we first compute the average
of that property for each independent simulation (µ1 =<

µ >2.5×105τ
and µ2 =< µ >3.5×105τ

). Then the value pre-
sented is the average between them (µ̄ = 1

2 (µ1 +µ2)) and
the error bars are the corresponding standard error

σ =

√
[(µ1 − µ̄)2 +(µ2 − µ̄)2]

2
=

|µ1 −µ2|
2

. (2)

We check the reliability of these error bars by computing,
for the metric properties of the whole membranes (Rg and

eigenvalues of the gyration tensor), the averages and errors
using a different procedure. We split the trajectories in
blocks of 105τ, which corresponds to roughly twice the
relaxation time of Rg, and compute the average for each of
the blocks. From the resulting 5 independent data points
(first 5× 104τ are still discarded), we compute then the
average and the standard error of the mean.

Fig. S 3 Global metric properties with alternative error calculation.
a) Rg of membranes. b) Ranked gyration tensor eigenvalues.

The resulting error bars for the global metric properties
(Fig. 3) are visually indistinguishable from those repre-
sented in Fig. 4 of the main text.

The properties associated to isolated rings were com-
puted in a different manner, as only one simulation of dura-
tion 2.5×105τ for each composition was carried out. In this
case, we used a combination of block analysis and bootstrap-
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ping, a procedure intended to maximize statistical reliability.
The set of instantaneous values of the target property com-
puted during the simulation is split in blocks of the same
size, and for each block, we compute the average of the
property and run bootstrap analysis on these averages to
get the error. This process is repeated for several block sizes,
until convergence in the subsequent error is achieved.
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3 Average mechanical bond length

Fig. S 4 Average mechanical bond length for both linking patterns:
distance between centers of linked rings. Error bars are present,
although smaller than the symbols. The errors are computed as
the estimate of the standard error of the sample mean considering
the average values from the simulation of 2.5×105τ and the one
of 3.5×105τ.
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4 Shape of membranes

Fig. S 5 Ratio Rg of membranes with Rring
g , computed for rings

within membranes with the same linking pattern. Even after dis-
counting the effects related to the size of individual rings, the largest
differences between P1 and P2 membranes are for the fully flexible
rings. Error bars are computed as the estimate of the standard
error of the sample mean considering the average values from the
simulation of 2.5×105τ and the one of 3.5×105τ.

Fig. S 6 Eigenvalues of the gyration tensor of the whole membranes

(λ 2
1 > λ 2

2 > λ 2
3 ) without normalization (

√
< λ 2

i >). Error bars are
computed as the estimate of the standard error of the sample mean
considering the average values from the simulation of 2.5× 105τ

and the one of 3.5×105τ.
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5 Shape of single rings

Fig. S 7
√

< λ 2
i > / < λ 2

3 > for i = 1,2 of single rings. Rings within
membranes with P1 (violet dots) and with P2 (green diamonds) do
not differ significantly, as it is generally the case for local properties.
Both seem stretched when compared to isolated rings (orange
crosses), whose λ1 and λ2 are closer to λ3. As expected, this
stretching effect is less important in the case of fully rigid rings.
Error bars are present, although smaller than the symbols. The
errors in P1 and P2 are computed as the estimate of the standard
error of the sample mean considering the average values from the
simulation of 2.5×105τ and the one of 3.5×105τ. The errors for the
isolated rings are computed with block analysis and bootstrapping.
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6 Model for contacts among particles
Here we show a detailed derivation of Eq. 7 in the main
text. For any given pair of interlocked rings, we consider
the different costs in conformational energy ∆Fi j associated
with any combination of contacts, using as a reference each
isolated ring

∆Ff f ≡ ∆Ff +∆Ff ,

∆Ff r ≡ ∆Ff +∆Fr ,

∆Frr ≡ ∆Fr +∆Fr , (3)

where ∆Fi is the change in conformational free energy
of a ring whenever it exposes a particle of type i as a contact
with another ring. Therefore, in Eq. 3, we have assumed
that the free energy of a contact is a simple addition of
free-energy changes associated with each of the fragments
establishing the contact, independently of the nature of the
partner fragment.

We can then define the excess free energy ∆F ≡ ∆Ff −
∆Fr as the net free-energy change associated with a contact
established by a flexible particle as compared to a rigid one.
We also define x as the fraction of rigid particles over the
total number of particles per ring (0 ≤ x ≤ 1).

Then the probability of each type of contact is propor-
tional to the probability of a random sampling (assuming
that the number of particles is large) times a Boltzmann
factor accounting for the statistical weight of each sampling

Pf f (x) ∝ (1− x)2 exp
(
−

∆Ff− f

kBT

)
= (1− x)2

µ
2
ω

2,

Pf r(x) ∝ 2x(1− x)exp
(
−

∆Ff−r

kBT

)
= 2x(1− x)µ2

ω,

Prr(x) ∝ x2 exp
(
−∆Fr−r

kBT

)
= x2

µ
2, (4)

where the last expression of each appears after substituting
the corresponding free energy change with its definition in
Eq. 3 and then applying the definitions

µ ≡ exp
(
− ∆Fr

kBT

)
, ω ≡ exp

(
− ∆F

kBT

)
. (5)

Eq. 7 in the main text follows after normalizing all proba-
bilities in Eq. 4 with Pf f (x)+Pf r(x)+Prr(x)= µ2

[
(1− x)2ω2 +2x(1− x)ω + x2

]
.

Journal Name, [year], [vol.],1–11 | 7



7 Contacts between ring pairs

Fig. S 8 Fraction of ring pairs having a) flexible-flexible contact,
b) flexible-rigid contact, c) rigid-rigid contact, and d) no contact.
For each pair of linked rings, we identify the pair of particles —
belonging to each of the rings — i) whose distance is smaller than
6
√

2σ , and ii) which are closer to each other. We assign the type
of contact depending on the particle type. If no pair of particles
for a given ring pair fulfills the conditions i) and ii), we assign "no
contact". The errors are computed as the estimate of the standard
error of the sample mean considering the average values from the
simulation of 2.5×105τ and the one of 3.5×105τ.
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8 Instantaneous KG heatmaps

Fig. S 9 Instantaneous KG heatmaps using the 2.5×105τ simula-
tion of the fully-flexible composition. Top line corresponds to P1
chainmails, while bottom line are P2 chainmails. For each linking
pattern, we show the KG per vertex of two frameshots separated
a time 5×105τ, similar to the typical autocorrelation time of the
gyration radius of the chainmails. The legend bar is saturated for
better visualization.
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9 Gaussian curvature at each vertex

Fig. S 10 KG per vertex for P1 membranes at all compositions. Left
column displays the 2.5× 105τ simulation and right column the
3.5×105τ simulation. In the 50% case, the line with more negative
values of KG has different inclinations, pointing out a spontaneous
symmetry breaking. The legend bar is saturated in the negative
side for better visualization.

Fig. S 11 KG per vertex for P2 membranes at all compositions. Left
column displays the 2.5× 105τ simulation and right column the
3.5×105τ simulation. The legend bar is saturated in the negative
side for better visualization.
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10 Scaling of membranes with number of rings

Fig. S 12 Curvature scales with membrane size. Cumulative Density
Functions (CDFs) of KG for fully flexible P1 membranes with 68
rings (violet dots) and 100 rings (black line). Orange line represents
the re-scaled distribution of the black line with q = 1.06±0.04. The
scaling factor was computed minimizing the quadratic error of the
re-scaled PDF relative to the PDF of the membrane with 68 rings,
and its error span the values of q that provide a quadratic error
under 5% relative to the peak of the reference distribution.
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