Supporting Information

Self-assembly of the Imidazolium Surfactant in the Aprotic Ionic Liquids.

The Anion Effect of Aprotic Ionic Liquids

Pan Yue,^a Zhao Chunhua,^{b,c} Wang Ruirui,^a Zhu Mingjie, ^a Zhuang Wenchang,^a Li Qintang*^a

^a School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018,

P. R. China

^b State Key Laboratory of Offshore Oil and Gas Exploitation, Beijing 100028, P. R. China

^c CNOOC Research Institute Ltd., Beijing 100028, P. R. China

ORCID:

Yue Pan: 0000-0001-9972-6917 Qintang Li: 0000-0001-6311-4281

Corresponding author: Qintang Li E-mail: liqintangwind@sina.com

¹H NMR Characterization

Fig. S1 ¹H NMR spectrum of C₁₆mimBr.

C₁₆mimBr (DMSO, 600 MHz) 0.83-0.88 (3H), 1.18-1.30 (26H), 1.73-1.82 (2H), 3.83-3.89 (3H), 4.10-4.20 (2H), 7.70-7.75 (1H), 7.76-7.80 (1H), 9.10-9.20 (1H).

Calculation of surface adsorption parameters

The surface parameters, such as the effectiveness of γ reduction (Π_{CMC}), the surface excess at the air/IL interface (Γ_{max}), the minimum area per surfactant molecule adsorbed at the surface (A_{min}) and the Gibbs free energy of micellization (ΔG_m), can be calculated according to equations S1-S4 below, where γ_0 and γ_{CMC} are surface tensions of the pure solvent and the solution at CMC, respectively.

п

$$\Pi_{CMC} = \gamma_0 - \gamma_{CMC} \qquad (S1)$$

$$\Gamma_{max} = -\frac{1}{RT} (\frac{d\gamma}{d\ln C}) \qquad (S2)$$

$$A_{min} = \frac{1}{N_A \Gamma_{max}} \qquad (S3)$$

$$\Delta G_m = RT \ln X_{CMC} \tag{S4}$$

SAXS analysis of Micelles

The SAXS curves of micelles were fitted with the SASfit software (version 0.94.7). The scattering of ellipsoid could be expressed as,

$$I(q,a,\varepsilon) = \left(\frac{4}{3}\pi a^3 \Delta \eta\right)^2 \int_0^{\frac{\pi}{2}} K^2(q,a\sqrt{\varepsilon^2 \cos^2\theta + \sin^2\theta}) \sin\theta d\theta$$
(S5)

where *a* is the radius of the rotational axis, ε is ratio between radius of the semi-principle axes and equatorial axis.

The hard sphere structure factor with Percus-Yevick closure relation and decoupling approach was adopted for the interaction between micelles. The structure factor of hard sphere could expressed as,

$$S(q, R_{HS}, f_q) = \frac{1}{1 + 24f_q \frac{G(f_q, R_{HS}q)}{R_{HS}q}}$$
 (S6)

where R_{HS} is the hard sphere repulsive radius; f_p is the volume fraction.

A constant was added in the background. More details could be found in the manual of SASfit.

Calculation of the structural parameters of the L_{α} phase

The lattice parameter (D) of the lamellar liquid crystalline phase is obtained according to the equations S7-S10, where d_{IL} and d_a are thickness of the solvent and solvophobic layer.

$$D = \frac{2\pi}{q_1}$$

$$d_{IL} = D(1 - \Phi_a) \quad (S8)$$

$$d_a = \frac{D - d_s}{2} \quad (S9)$$

$$S = \frac{V_a}{2d_a} \quad (S10)$$

Fig. S2 Size distribution of aggregates in the 5% C₁₆mimBr/[Emim]EtSO₄ solution at 60°C.

Fig. S3 Structure parameters of the L_{α} phases in the C₁₆mimBr/[Emim]NO₃ system at 60°C. d_a , solvophobic region thickness; d_{IL} , solvent layer thickness; S, the area occupied by the surfactant molecules at the solvophilic/solvophobic interface.

Fig. S4 Size distribution of aggregates in the C_{16} mimBr/AILs system at 60°C for different concentrations of C_{16} mimBr.

Fig. S5 SAXS patterns of micelles in the C_{16} mimBr/[Emim]EtSO₄ system at 60°C for different concentrations of C_{16} mimBr.

Table S1 Parameters of micelles in the C₁₆mimBr/[Emim]EtSO₄ system at 60 °C.

<i>C</i> / %	<i>a</i> / nm	<i>b</i> / nm	З	N
2.5	1.43	3.04	2.12	57
5	1.42	3.67	2.59	68
10	1.40	2.92	2.09	52

a, the equal semi-axis; b, the principle semi-axis; ε , the axis ratio; N, the aggregation number.

Fig. S6 POM images of the L_{α} phases in the C₁₆mimBr/[Emim]EtSO₄ system at 60°C. The C₁₆mimBr concentrations are 60 % (a), 65 % (b), 70 % (c), 75 % (d), 80 % (e), 85 % (f) and 90 % (g).

Fig. S7 SAXS patterns of the L_{α} phases in the C_{16} mimBr/[Emim]EtSO₄ system at 60°C for different concentrations of C_{16} mimBr.

Fig. S8 SAXS patterns of micelles in the C_{16} mimBr/[Emim]NTf₂ system at 60°C for different concentrations of C_{16} mimBr.

Table S2 Parameters of micelles in the C_{16} mimBr/[Emim]NTf₂ system at 60°C.

<i>C / %</i>	<i>a</i> / nm	<i>b</i> / nm	З	N
10	1.04	1.07	1.02	11
20	1.12	1.12	1.00	13
30	1.07	1.44	1.35	15

a, the equal semi-axis; b, the principle semi-axis; ε , the axis ratio; N, aggregation number.

Fig. S9 POM images of the L_{α} phases in the C₁₆mimBr/[Emim]NTf₂ system at 60°C. The C₁₆mimBr concentrations are 70 % (a), 75 % (b), 80 % (c) and 85 % (d).

Fig. S10 SAXS patterns of the L_{α} phases in the C₁₆mimBr/[Emim]NTf₂ system at 60°C for different concentrations of C₁₆mimBr.

		•	
AIL	X_M	X _{La}	
[Emim]NO ₃	0.0048	0.44	
[Emim]EtSO ₄	0.0096	0.47	
[Emim]NTf ₂	-	0.69	

Table S3 CAC in the C_{16} mimBr/AILs system at 60°C.

 X_M , CMC in the molar ratio; $X_{L\alpha}$, CAC of the L_{α} phase in the molar ratio.

Fig. S11 FTIR spectra of AILs and 30 % C₁₆mimBr/AILs solutions. (a) [Emim]NO₃; (b) [Emim]EtSO₄; (c) [Emim]NTf₂; (d) [Emim]BF₄.

AIL	A	Z
[Emim]NO ₃	2211	24.5
[Emim]EtSO ₄	3136	29.9
[Emim]NTf ₂	4695	29.7
[Emim]BF ₄	2403	23.1

Table S4 Rheology parameters of the 80 % C_{16} mimBr/AIL L_{α} phases at 60 °C.

A, the number of flow units interacting with each other; z, the coordination number.

Fig. S12 Variations of G' and G'' with temperature of the 80 % C_{16} mimBr/AIL L_{α} phases.

Fig. S13 DSC curves of the 80 % $C_{16} mimBr/AIL \ L_{\alpha}$ phases.

Fig. S14 EIS results of the L_1 and L_{α} phases in different AILs at 60°C. (a) EmimNO₃; (b) EmimEtSO₄; (c) EmimBF₄.

Table S5 Conductivity	of the L_1 and L_{α}	phases in different AI	Ls at 60°C.
-----------------------	-------------------------------	------------------------	-------------

AIL	$\sigma(AIL)/$	$\sigma(L_1, 30\%)$ /	$\sigma(L_{lpha}, 80\%)$ /
	mS·cm ⁻¹	mS·cm ⁻¹	mS·cm ⁻¹
EmimNO ₃	18.6	0.331	0.0309
EmimEtSO ₄	7.18	0.479	0.0373
EmimBF ₄	21.6	0.0608	0.0476

Fig. S15 EIS results (a) and conductivity (b) of the 80 % C_{16} mimBr/[Emim]NTf₂ L_{α} phase at different temperatures.