Journal Name

ARTICLE TYPE

Cite this: DOI: 00.0000/xxxxxxxxxx

Electronic Supplementary Information for "The Impact of Cross-Linker Distribution on Magnetic Nanogels: Encapsulation, Transport and Controlled Release of the Tracer."

Ivan S. Novikau,∗*^a* Ekaterina V. Novak,*^b* and Sofia S. Kantorovich*a*,*^c*

Received Date Accepted Date

-

DOI: 00.0000/xxxxxxxxxx

1 Analysis of Bond Length Distribuitions

The energy of a bond is proportional to its length, *lbond*. Hence, in Fig. [1](#page-0-0)**a** (right) we present the density distribution of normalized bond lengths within a specific morphology, $\rho(\overline{l_{bond}})$, where $\overline{l_{bond}} = (l_{bond} - l_{bond,min})/(l_{bond,max} - l_{bond,min})$. This 'min-max' scaling is chosen to highlight the presence of highly stretched crosslinkers within nonuniform morphologies. Non-rescaled distributions, ρ(*lbond*), are provided in Fig. [1](#page-0-0)**a** (left). A comparison between the plots in Fig. [1](#page-0-0)**a** reveals that rescaling only affects crosslinkers, meaning that the length of polymer backbone stretchable springs remains consistent across all morphologies. Additionally, the distribution of average bond length over a small shell distance *r* from the center of mass of the gel is presented in Fig. [1](#page-0-0)**b**. We once again observe that polymer *lbond* remain constant throughout the gel's volume, while cross-linkers exhibit fluctuations. For instance, there is a peak for the gaussian morphology at the center of the gel. By correlating average *lbond* for different morphologies with bond stretching energies, *Ebonded*, shown in Fig. [1](#page-0-0)**c**, we can infer that due to excluded volume interactions, it becomes challenging for cross-linkers to pack polymers into confined spaces, resulting in the stretching of cross-linkers.

Fig. 1 a (left) Histograms of *lbond* distributions for polymer backbone stretchable springs (FENE potentials) and cross-linkers (harmonic potentials). (right) Histograms of 'min-max' normalized bond length *lbond* for various morphologies. b Average *lbond* as a function of the distance *r* from the center of mass of the MNG. c Energy of bonded interactions within various morphologies. Along the x-axis is the simulation time divided by the Brownian relaxation time of a MNP. Both *lbond* and *r* are measured in units of bead diameter, σ.

2 Fitting Magnetisation Autocorrelation Functions (ACF)

As mentioned in the main text, the shape of the MNG ACFs is rather complex and required 10 stretched exponential functions $e^{-t^{\beta}}$ for exponents $0 < \beta < 2$ to fit them in a reliable way. We employed Differential Evolution algorithm in order to optimise

^a Faculty of Physics, University of Vienna, Kolingasse 14-16, Vienna 1090, Austria Email: ivan.novikau@univie.ac.at

^b Ural Federal University, Lenin Av. 51, Ekaterinburg 620000, Russian Federation

^c Research Platform MMM, University of Vienna, Oskar-Morgenstern-Platz 1, Vienna 1090, Austria

the fitting. Obtained weights of the stretched exponentials are provided in the following three tables.

Table 1 gaussian

	Ťi	τ_i	βi
0	0.0313833796	668869.846	1.94976674
1	0.0571745925	27.3872559	0.553795715
\mathfrak{D}	0.0272604858	573313.803	0.218793286
3	0.122433377	673301.266	1.94916583
4	0.334049327	311.535839	0.451347345
5	0.0463671472	664291.87	1.94998642
6	0.113471535	11.6346341	0.776222096
7	0.0777341818	120532.938	1.94999992
8	0.0425189368	44376.0054	1.04497825
9	0.150850617	5.54432802	0.542271495

Table 2 1-gaussian

1	fi	τ_i	βi
0	0.134381915	345126.302	1.94989022
1	0.052857027	1550.03396	0.747324177
2	0.132876636	7.2360366	0.594977791
3	0.116992815	29.1948474	1.63578785
4	0.0831295954	344203.601	1.94972976
5	0.0862043751	2.94987194	0.482914566
6	0.0580794413	38670.5705	1.38074828
7	0.103970802	1522.14379	0.62283344
8	0.0716531728	345811.168	1.94999376
9	0.162747132	158.250851	0.556393399

3 Tracer Diffusion

In order to obtain the escape time and the diffusion coefficients of the tracers we calculated the mean-squared displacement for the three considered morphologies, and field scenarios. The results are presented in the three figures below as indicated in the corresponding legends.

Fig. 2 *MSD*(*t*) a Zero-field case. b Constant non-zero-field scenario. c Rotational-field situation.