
Supplemental Material: Site-percolation transition of run-and-tumble particles

Soumya K. Saha, Aikya Banerjee, and P. K. Mohanty∗

Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 India.

The Supplemental Material provides additional results to support and strengthen the claims of
the article. First we discuss the simulation methods and describe the evolution of the RTP system to
the steady state. We also provide the finite size scaling collapse for all the critical points, mentioned
in the main text.

I. STEADY STATE OF THE MODEL

(a) (b) (c)

FIG. 1: Time evolution of (a)ϕ, (b)ϕ2, and (c)ϕ4 for p = 0.235 and various values of ω, starting from a random
initial distribution of N = L2/2 RTPs. Here ϕk is the k-th moment of the largest cluster and is given by

ϕk = 1
Nk ⟨skmax⟩. Here L = 128 and the data is averaged over 200 initial conditions.

From the Monte Carlo simulations of the model defined in Eq. (2) in main text, we calculate the steady state
averages of the largest cluster ϕ = 1

N ⟨smax⟩ and the k-th moment, ϕk = 1
Nk ⟨skmax⟩. A cluster is defined in a way

similar to the clusters defined in the site percolation problem - two particles separated by one lattice unit belong to
same cluster. In Fig. 1 we show for a fixed p = 0.235 how ϕ, ϕ2 and ϕ4 evolve with time t with different values of ω,
starting from a random initial distribution of RTPs on a L × L square lattice (L = 128). The initial orientation of
particles are also chosen randomly and independently. It turns out that smax and its moments reach their stationary
value well before t = 105. This gives us an estimate of the relaxation time. In all the simulations we relax the systems
until t = 105 and then calculate the steady state average values in next 106 MCS. The steady state data is further
averaged over 200 different initial conditions. From these steady state values we obtain the order parameter ϕ, the
susceptibility χ = ϕ2 − ϕ2 and the Binder cumulant U4 = 1− ϕ4

3ϕ2
2
.

A. The phase diagram

To obtain the phase diagram we plot the heat map of the order parameter ⟨smax⟩ in (ω, p)- plane in Fig. 2(a) where
the darker region represent a phase separated state that contains a macroscopic-cluster. The line that separates
the mixed phase from the phase-separated state is obtained from a best fit of the the critical points obtained from
simulations. Clearly, a re-entrant percolation transition is observed when p is varied keeping ω fixed. With increased
p percolated state appears and then then it disappears with further increase of p. Typical largest clusters of the
system are shown in Fig. 2(b) at nine different points (p = 0.02, 0.08, 0.235) × (ω = 0.012, 0.022, 0.032) marked as
circles. The largest cluster is macroscopic (and spans the lattice) for all three values of p when ω = 0.012. Whereas
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for ω = 0.022, the largest cluster is small for p = 0.08, it becomes much denser at p = 0.022 and becomes sparsely
connected again at a larger value of p = 0.235 indicating the re-entrant nature of the transition.

FIG. 2: (a) Phase diagram: The solid line, obtained from the best fit of the critical points, separates the mixed
phase from phase separated state. The background is the heat map of the order parameter. (b) Typical largest

clusters at nine different points (p = 0.02, 0.08, 0.235) × (ω = 0.012, 0.022, 0.032) marked as circles in (a).

B. Critical exponents from finite size scaling

FIG. 3: Critical point II. (pc, ωc) = (0.150, 0.0235) : (a)U4, (b) ϕL
β
ν and (c)χL− γ

ν as a function of εL
1
ν . The best

collapse is obtained for 1
ν = 1.26, β

ν = 0.10, γ
ν = 1.75. The inset shows raw data, U4, ϕ, χ vs. ε.

To obtain the static critical exponents ν, β, γ we employ the finite size scaling analysis,

ϕ = L− β
ν fϕ(εL

1
ν ); χ = L

γ
ν fχ(εL

1
ν ); U4 = fb(εL

1
ν ). (1)

For one of the critical point I. (pc, ωc) = (0.235, 0.020) Figs. 3(a), (b) and (c) in the main text show respectively the

scaling collapse of ϕL
β
ν , χL− γ

ν and U4 as a function of εL
1
ν . Similar scaling collapse for the other critical points (II

to VI mentioned in Table I of the main text) are shown respectively in Figs. 3 to 7.

C. Critical behaviour in p- direction

In a two parameter space there are two independent direction. At any critical point the critical exponents can be
obtained from varying one of the paramters keeping the other fixed. So far we have done the finite size scaling analysis
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FIG. 4: Critical point III. (pc, ωc) = (0.080, 0.0247) : (a)U4, (b) ϕL
β
ν and (c)χL− γ

ν as a function of εL
1
ν . The best

collapse is obtained for 1
ν = 1.22, β

ν = 0.09, γ
ν = 1.82. The inset shows raw data, U4, ϕ, χ vs. ε.

FIG. 5: Critical point IV. (pc, ωc) = (0.029, 0.020) : (a)U4, (b) ϕL
β
ν and (c)χL− γ

ν as a function of εL
1
ν . The best

collapse is obtained for 1
ν = 1.13, β

ν = 0.066, γ
ν = 1.868. The inset shows raw data, U4, ϕ, χ vs. ε.

by varying ω for a fixed p. For consistency, we consider one of the critical point (pc, ωc) = (0.235, 0.020), fix ω = 0.02
and study the critical behaviour by varying p. Now the scaling functions depend on ∆ = pc − p,

ϕ = L− β
ν f̃ϕ(∆L

1
ν ); χ = L

γ
ν f̃χ(∆L

1
ν ); U4 = f̃b(∆L

1
ν ). (2)

A plot of ϕL
β
ν , χL− γ

ν and U4 as a function of ∆L
1
ν is shown in Fig. 8 where β

ν ,
γ
ν and 1

ν are tuned to a value that

gives the best collapse. We find that the critical exponents 1
ν = 1.43, β

ν = 0.14, γ
ν = 1.72 obtained previously by

varying ε, gives rise to best data collapse.

II. MOTILITY INDUCED PHASE SEPARATION TRANSITION

The RTPs undergo a percolation transition when ω is lowered below a critical threshold value ωc that depends
on p. This percolation transition belong to the super universality class of Z2 percolation. Should we expect that
the motility induced phase separation transition of RTPs also occur occurs at ωc? In fact, in 2D Ising Model a
percolation transition occurs exactly at the same critical temperature Tc where the system phase transit from being
a para-magnet to a ferromagnet. The critical behaviour of percolation transition form a new universality class called
Z2-percolation which is different from Ising universality class (IUC). In a similar way, if MIPS occurs in RTP model
when ω is lowered below ωc, what could be a suitable order parameter to characterize such a transition? We use the
order parameter suggested in Ref.[3]. It is well-known that in a rectangular system of length Lx and height Ly, the
high density phase boundaries align in the shorter direction. Fig. 9(a) shows a typical high density phase (shaded)
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FIG. 6: Critical point V. (pc, ωc) = (0.0275, 0.019) : (a)U4, (b) ϕL
β
ν and (c)χL− γ

ν as a function of εL
1
ν . The best

collapse is obtained for 1
ν = 1.11, β

ν = 0.065, γ
ν = 1.87. The inset shows raw data, U4, ϕ, χ vs. ε.

FIG. 7: Critical point VI. (pc, ωc) = (0.020, 0.018) : (a)U4, (b) ϕL
β
ν and (c)χL− γ

ν as a function of εL
1
ν . The best

collapse is obtained for 1
ν = 1.10, β

ν = 0.055, γ
ν = 1.89. The inset shows raw data, U4, ϕ, χ vs. ε.

in a system where Lx = 2Ly. Then the order parameter ϕ′ is defined as [3],

ϕ′ =
2

LxLy

Lx∑
x=1

|Nx − ρLy| ; Nx =

Ly∑
y=1

nx,y, (3)

where Nx is the total number of particles at lattice sites i ≡ (x, y) with the same x-coordinate. A schematic
representation of how ϕ′ quantifies a typical clustered configuration is shown in Fig 9.

Using finite size scaling of the standard order parameter and the corresponding susceptibility at the critical points

IV and VI (refer Table 1 of the main text) yields the exponents β′

ν and γ′

ν at those points. The relations between
these exponents and the corresponding site-percolation exponents are then verified using Eq. (1) of the main text.
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FIG. 8: Critical point IV. (pc, ωc) = (0.235, 0.020) : (a)U4, (b) ϕL
β
ν and (c)χL− γ

ν as a function of ∆L
1
ν . The best

collapse is obtained for 1
ν = 1.43, β

ν = 0.140, γ
ν = 1.72. The inset shows raw data, U4, ϕ, χ vs. ∆.

FIG. 9: Schematic configuration of a phase-separated state on a rectangular lattice (Lx = 2Ly ). (b) The order
parameter ϕ′ of the system measures how different is Nx from its mean ρLy in an absolute sense (the shaded area).

Here Nx counts the total number of particles at all the lattice sites i ≡ (x, y) which have same x-coordinate.
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