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Supporting information 

SI-1: Chirality in active particle 

Chirality is a property of being chiral. An object having a distinguishable mirror image is known 

as a chiral one. In the context of the present work,  certain non-spherical active colloidal or 

natural microswimmers are chiral in nature.  Artificial chiral active particles can be created due 

to fabrication defects or by purposeful designs. Chiral active particles have intrinsic torque, 

leading to a spinning motion as a result of translation-rotation coupling in the hydrodynamic 

sense (Kraft et al., [1]) or an asymmetry in the propulsion mechanism [2]. In contrast, achiral 

active particles do not have intrinsic spinning motion due to structural and functional symmetry. 

Therefore, the transport and diffusion characteristics of chiral particles are expected to be notably 

different from achiral ones. Additionally, the dynamical properties of a chiral active particle 

heavily depend on the direction and magnitude of the torques. Particles with positive and 

negative torques are known as levogyre and dextrogyre, respectively. 

Several previous works focus on the design and synthesis of chiral particles aiming at specific 

applications [3-5].  For example,  Ghosh et al. [3] reported the design and function of chiral 

active particles that can be operated in water with high (micron-level) precision using 

homogeneous magnetic fields. Schamel et al., [4] use chiral colloids to demonstrate the Baranova 

and Zel’dovich propeller effect.  

 

SI-2:  Relevance of parameters used in simulation  

Considering time in second (s) and length in micrometer (m) the units of the simulation 

parameter are: self-propulsion speed v0m/s, rotational diffusion D s-1, Translational diffusion 
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D0m2/s,0 s
-1,  s, and m and m-1. The exact values of the self-propulsion parameters 

can be found in the experimental works[17, review]..  

Let's first consider rotational diffusion time. Its value can be approximately estimated using 

Einstein–Smoluchowski relation,  
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In a study by Volpe et al. [17], it was found that the experimental value of the rotational 

diffusion time of an active Janus particle closely matches the estimation based on the Einstein–

Smoluchowski relation. Further, they reported that for a Janus particle (silica sphere with gold 

cap) of size 2.13 µm, rotational relaxation time is about 200 second in mixture of water and 2,6-

lutidine. However,the rotational diffusion time scale can be adjusted by modifying the particle 

size and the viscosity of the medium. 

The self-propulsion speed v0: Reference [17] presents v0 as a function of light intensities and 

demonstrates that v0 varies between 0.05 m/s and 0.4 m/s. Other sources (refer to table 1 in 

ref[28]) indicate that the self-propulsion speed greatly depends on the type of active particles, the 

size of the active surface, and the self-propulsion mechanism involved. The self-propulsion 

velocity can range from 0.05 m/s to upwards of 100mm/s. Consequently, the self-propulsion 

parameters, D  and v0, used in our simulation can be accessed through in experiments. 

 The amplitude of the chiral torque (  ) depends on particle shape and anisotropy in the 

propulsion mechanism [1-2]. In our analysis, we consider the situation when },{ 0  D  as 

well as the other possibilities },{ 0  D and  }.,{ 0  D  

Particle-wall alignment interaction induced torque 0 : Our model of alignment interaction rests 

on the fact that near the walls, particle-wall interaction stabilizes the active particles at some 

specific orientations.  This assertion is in accord with previous studies [6-9]. For example, based 

on extensive study on a catalytically active Janus particle W. E. Uspal et al. [6] demonstrate that 

in the close vicinity of hard planar walls, active Janus particles display a steady direction and 

height above the wall. Properties of such hovering states largely depend on the catalyst coverage 

and the interactions of the product molecules with the different parts of the particle. Recently [7], 



using holographic imaging it was demonstrated that in swimming bacteria, like E. coli, the 

mechanism of wall entrapment is an intricate interplay of hydrodynamic and steric interactions 

with a strongly anisotropic character. It has been observed that in the trapped state, swimming 

bacteria move with the average body axis pointing into the walls [7]. The amplitude of 

orientation-dependent alignment interaction and torque largely depends on the dielectric 

properties of the material used to prepare active particles, fuel distribution near the walls, and 

hydrodynamic interaction near the wall.  Thus, 0  can be treated as an independent model 

parameter. 0  can be larger than 𝐷𝜃 or vice-versa. To understand, the possible impact of 

alignment interactions in all regimes, we numerically estimated the diffusion coefficient as a 

function of 𝜔0/𝐷𝜃,  as well as, 𝜔0/Ω.  

 

SI-3: Rotational relaxation and Mean square displacement of a chiral active 

particle in free space   

A. Auto-correlations function of self-propulsion velocity components  

As the x and y directional self-propulsion motions of an active particle in the free space are 

statistically independent,  

.0)0(cos)(sin )0(sin)(cos   tt  

Also, the average behaviors of self-propulsion motion in both the x and y directions are the same. 

Thus, we can write, 

:
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This auto-correlation function can be re-arranged as,  
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Where, Re{…} represents the real part of  the complex quantity. As  the stochastic variable 

)0()()(   tt follows Gaussian statistics,   and in the absence of particle-wall alignment 

interaction, its first two moments are given by, 
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Cumulant expansion of the stochastic Gaussian variable (t) produces, 
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Using this expression in (S2), we obtain Eq.(7) of main text, 
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B. Mean square displacement 

Integration of the stochastic differential Eq. (2) of main text produces, 
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Corresponding square displacement is given by,  
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Now, taking average over noise realizations, 

. )()(2 )(cos)(cosv)(
00

0

00

2
0

2 tdtttdDtdtttdtx
t

xx

ttt

    

Making using of Eq.(5) and (7) of main text, we obtain  
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Straightforward integration of the above equation produces Eq.(9) of main text  
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SI-4: Numerical simulation method 

The final terms of all three equations (2-4) in the main text [x(t),  y(t),  (t)] represent zero mean 

white noise with Gaussian distribution. The times evolution equations for the stochastic variables 

x, y and   can be expressed as a general form of stochastic differential equation:  

)()( tBXAX 
 

Where, X ={x, y and } and the first term on the right hand side of the above equation is the 

deterministic and second one that is stochastic. There are several numerical schemes (Heun's 

method [11], stochastic runge-kutta methods [12,13], Milstein algorithm [14] ) to solve this 

equation. All scheme produces the same results when the numerical integration time steps are 

small enough.  In these schemes, Gaussian white noises  [x(t),  y(t),  (t)]  are generated from 

two random numbers which are uniformly distributed on the unit interval. Box–Mueller 

algorithm is used to convert them into a normal distribution with unit variance and zero mean.  

Boundary conditions:Our simulations consider confining walls to be perfectly reflecting. The 

wall-particle collisions have been modeled by the elastic reflection of instantaneous velocity at 

the boundary [15, 16] . The reflecting wall exerts a force, (𝒓̇. 𝑛̂)𝑛̂/𝜇 if the particle is at the wall 

and zero otherwise.  Where,   𝑛̂   is the local normal to the wall pointing outwards and 𝜇 

represents the mobility.  As a result of the interaction with the hard wall, the particle’s 

instantaneous velocity direction gets reverted at the boundaries. 

SI-5: Derivation of Eq(12) 

For configuration I, the active particles tend to stick against the top (bottom) wall [see panel (a) 

in Fig.S1] at an angle  () when 0 is stronger than D. For this orientation of v0, the 

displacement due to self-propulsion motion along the channel axis is zero.  However, self-

propulsion contributes in diffusion when v0 direction gets tilted due to rotational diffusion [see 

panel (b) in Fig.S1] 

 



 

Figure S1: This figure schematically illustrates:  (a) the stable orientation of the active particle 

against the top wall at    (b) a small deviation of the orientation  from the stable angle, (c) 

two slanted blue arrows represent two orientational states (kinematic states) at   and 

around the stable orientation (red arrow).  

Probability of tilting v0  by an angle  about the stable orientation,    
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Where N is a normalization constant. For orientation fluctuations about the stable v0 direction 

at the top wall, the change in interaction potential is given by,  

  

















22





 VVV

 

If  is small,  
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Thus,  
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Now considering particle-wall interaction (equation 1 in the main text) in proper dimension,   
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Combining  Eq.(S4) and Eq.(S5), we get   
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Where,  D = kBT/R.  On normalization of the above distribution function, we obtain 
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The variance 2 of this distribution is given by,   

(S8)  -   -   -   -   02






D


 

To estimate v0 orientation fluctuation-induced diffusion, we assume that on an average, self-

propulsion velocity direction switches between two kinematic states ,  and  (as 

shown in Fig.S1(c)) over an approximate time period 1/0.  For these two v0 orientations, the  

components of self-propulsion along the channel axis are,    
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Considering the switching of v0 direction between these two kinematic states as a dichotomic 

process, we obtain Eq.(11) of the main text . 

 

SI-6: Symmetry axis of the JP and the self propulsion velocity direction 

 
Figure S2: (a) Schematics of Janus particle depicting: (a) active surface, (b) symmetry axis 

bisecting active surface (indicated by dashed line), and (c) possible direction of self-propulsion 



velocity  with respect to the symmetry axis. Note that for a perfectly symmetric JP, the symmetry 

axis we refer to is C∞ and the symmetry point group of the particle is C∞v. 

 

In Figure S2, we schematically illustrate the direction of self-propulsion velocity (v0) with 

respect to the symmetry axis of the JP. Here, The symmetry axis (or plane in the case of 3D) 

refers to a line (or plane) that bisects the coated hemisphere (active hemisphere). The two equal 

parts of the bisected active hemisphere are indicated by A and B [see Fig.S2(c)].  The average 

direction of v0 aligns with the symmetry axis, but the instantaneous direction fluctuates around it 

(see Figure 1(g, h, i) in reference [17]). Let's consider the instantaneous rates of self-phoresis in 

parts A and B of the active surface as rA and rB, respectively.  Only when rA =  rB, the direction of 

v0 is expected to be coincide with the symmetric axis. On the other hand, if rA does not equal rB, 

the direction of v0 does not fall on the symmetric axis. In Figure S2(c), the yellow arrow 

indicates the direction of v0 when rA is less than rB. In the context of particle-wall alignment 

interaction, near the walls, for some orientation of the particle, part A and part B of the active 

surface are not equally exposed to the fuel. Thus, rA≠ rB and v0 does not fall on the symmetric 

axis. 
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